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Coupled POS Tagging on Heterogeneous Annotations
Zhenghua Li, Jiayuan Chao, Min Zhang, Wenliang Chen, Meishan Zhang, and Guohong Fu

Abstract—The limited scale and genre coverage of labeled data
greatly hinders the effectiveness of supervised models, especially
when analyzing spoken languages, such as texts transcribed from
speech and informal text including tweets and product comments
in Internet. In order to effectively utilize multiple labeled datasets
with heterogeneous annotations for the same task, this paper pro-
poses a coupled sequence labeling model that can directly learn and
infer two heterogeneous annotations simultaneously, using Chinese
part-of-speech (POS) tagging as our case study. The key idea is
to bundle two sets of POS tags together (e.g., “[NN, n]”), and
build a conditional random field (CRF) based tagging model in
the enlarged space of bundled tags with the help of ambiguous la-
beling. To train our model on two nonoverlapping datasets that
each has only one-side tags, we transform a one-side tag into a set
of bundled tags by concatenating the tag with every possible tag
at the missing side according to a predefined context-free tag-to-
tag mapping function, thus producing ambiguous labeling as weak
supervision. We design and investigate four different context-free
tag-to-tag mapping functions, and find out that the coupled model
achieves its best performance when each one-side tag is mapped
to all tags at the other side (namely complete mapping), indicating
that the model can effectively learn the loose mapping between
the two heterogeneous annotations, without the need of manually
designed mapping rules. Moreover, we propose a context-aware on-
line pruning strategy that can more accurately capture mapping
relationships between annotations based on contextual evidences
and thus effectively solve the severe inefficiency problem with our
coupled model under complete mapping, making it comparable
with the baseline CRF model. Experiments on benchmark datasets
show that our coupled model significantly outperforms the state-
of-the-art baselines on both one-side POS tagging and annotation
conversion tasks. The codes and newly annotated data are released
for research usage.1

Index Terms—Part-of-speech tagging, coupled sequence label-
ing, heterogeneous annotations.
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I. INTRODUCTION

G IVEN an input sentence of n words, denoted by x =
w1 . . . wn , POS tagging aims to predict a tag sequence

t = t1 . . . tn , where ti ∈ T (1 ≤ i ≤ n) and T is a predefined
tag set. POS tags are designed to represent word classes so that
words with the same POS tag play a similar morphological or
syntactic role in language usage [1]. As the most fundamental
task for text analysis, POS tagging is crucial for many high-level
tasks such as named entity recognition (NER) [2], syntactic
parsing [3], and information extraction [4]. In particular, studies
on dependency parsing demonstrate that POS tag-based fea-
tures are key for alleviating the data sparseness problem of pure
lexical features [5], [6]. However, due to the lack of morpho-
logical clues, Chinese POS tagging turns out to be much more
challenging than other morphologically-richer languages such
as English. The state-of-the-art POS tagging accuracy is about
94% for Chinese, which is much lower than 97% for English.

Another factor that brings down POS tagging accuracy is the
data sparseness problem due to limited scale and genre cover-
age of labeled data. Due to the heavy cost of manual annotation,
labeled data is usually limited in both scale and genre, sig-
nificantly hindering the effectiveness of supervised statistical
models in processing real texts, especially when analyzing texts
transcribed from speech and informal text such as tweets and
product comments in Internet. As a typical sequence labeling
task, part-of-speech (POS) tagging is more prone to suffer from
the data sparseness issue than binary or multi-class classification
problems. Following standard practice, this work builds our ap-
proach based on a linear-chain conditional random field (CRF)
model [7].

To alleviate the data sparseness problem due to limited scale
of labeled data, semi-supervised learning has been extensively
studied for POS tagging as a promising research line. [8] show
that standard self-training can boost the performance of a sim-
ple HMM based POS tagger. [9] apply tri-training to English
POS tagging, boosting accuracy from 97.27% to 97.50%. [10]
derive word clusters from large-scale unlabeled data as extra
features for Chinese POS tagging. Recently, the use of natural
annotations becomes a hot topic in sequence labeling problems,
especially in Chinese word segmentation [11]–[13]. The idea is
to derive segmentation boundaries from implicit information en-
coded in web texts, such as anchor texts and punctuation marks,
and use them as partially labeled training data in sequence
labeling models.

This work follows another research line on utilizing multi-
ple labeled data with heterogeneous annotations for alleviating
data sparseness. For example, Penn Chinese Treebank (CTB),
a widely used benchmark data, contains about 20 thousand
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Fig. 1. An example to illustrate the annotation differences between CT B
(above) and P D (below), and how to transform a one-side tag into a set of
bundled tags.

sentences annotated with word boundaries, POS tags, and syn-
tactic structures [14], [15]. People’s Daily corpus (PD)2 is a
large-scale corpus annotated with words and POS tags, contain-
ing about 300 thousand sentences from the first half of 1998
of People’s Daily newspaper (see Table II) [16]. It is a promis-
ing idea to learn better models from both resources. However,
the key challenge of exploiting the two resources is that they
are non-overlapping and adopt different sets of POS tags which
are impossible to be precisely converted from one to another
based on heuristic rules.3 Fig. 1 shows two example sentences
from CTB and PD. We discuss the differences between the
annotation guidelines of the two datasets in Section III.

Previous work on exploiting heterogeneous data (CTB and
PD) mainly focuses on indirect guide-feature methods. The ba-
sic idea is to use one resource to generate extra guide features on
another resource [18], [19], which is similar to stacked learning
[20]. First, PD is used as source data to train a source model
TaggerP D . Then, TaggerP D generates automatic POS tags on
the target data CTB, called source annotations. Finally, a tar-
get model TaggerC T B -guided is trained on CTB, using source
annotations as extra guide features. Although the guide-feature
based method is effective in boosting performance of the tar-
get model, we argue that it may have two potential drawbacks.
First, the target model TaggerC T B -guided does not directly use
PD as training data, and therefore fails to make full use of
rich language phenomena in PD. Second, the method is more
complicated in real applications since it needs to parse a test
sentence twice to get the final results.

This paper proposes a coupled sequence labeling model that
directly learns and infers two heterogeneous annotations simul-
taneously, using Chinese POS tagging as a case study. The key
idea is to bundle two sets of POS tags together (e.g. “[NN,n]”),
and build a CRF based tagging model in the enlarged space of
bundled tags. To make use of two non-overlapping datasets that
each has only one-side tags, we transform a one-side tag into a

2http://icl.pku.edu.cn/icl_groups/corpustagging.asp
3As commented by a reviewer, we may build a model to learn the mapping

rules if heterogeneous annotations are available on the same texts. However,
heterogeneous data are usually non-overlapping. As one exception, the “Corpus
of Spontaneous Japanese” contains two layers of word segments and POS tags
of different granularities [17].

set of bundled tags by concatenating the tag with every possible
tag at the missing side according to some predefined context-
free tag-to-tag mapping rules. After such transformation, each
sentence has an exponential-size set of bundled tag sequences as
weak supervision, which is known as ambiguous labeling [21]–
[23]. After a straightforward extension, the CRF-based coupled
model can be naturally trained using such ambiguous labeling.
In summary, this work makes the following contributions:

1) We propose a simple and effective coupled sequence la-
beling model for utilizing multiple heterogeneous labeled
data. Experiments show that the coupled model is able to
learn the implicit loose mappings between heterogeneous
annotations.

2) We also propose a context-aware online pruning strategy
that can effectively solve the severe inefficiency problem
with the coupled model, making it comparable with the
baseline CRF model on training and inference speed.

3) Experiments show our approach significantly outperforms
the baseline and guide-feature models on one-side POS
tagging accuracy of both CTB and PD.

4) We have manually annotated CTB tags for 1,000 PD
sentences. Experiments on the data show that our coupled
model significantly outperforms the baseline and guide-
feature models on the annotation conversion task by a
large margin.

This paper has substantially extended our preliminary work
[24] in the following perspectives:

1) Most importantly, this work proposes a context-aware on-
line pruning strategy that can effectively improve both
training and inference efficiency of the coupled model
with little accuracy loss (Section IV-C).

2) Based on the newly proposed pruning strategy, we re-
design the experimental settings with a more reasonable
data split. We rerun all experiments and report totally new
results including accuracies on PD, with extensive analy-
sis of different models.

3) This paper presents a more comprehensive description of
the models and algorithms.

4) Section III-A gives a systematic and detailed discussion
on the differences betwen CTB and PD annotations.

II. TRADITIONAL POS TAGGING (TaggerC T B AND

TaggerP D )

Typically, POS tagging is treated as a sequence labeling prob-
lem and has been previously addressed by machine learning
algorithms such as maximum entropy [25], CRF [26], and per-
ceptron [27]. In this work, our proposed coupled model is a
direct extension of a traditional linear-chain CRF. To better il-
lustrate our coupled model, this section describes the traditional
CRF based POS tagging in detail.

As a log-linear probabilistic model [26], [28], CRF defines
the probability of a tag sequence as:

p(t|x; θ) =
eScore(x,t;θ)

Z(x; θ)
(1)

where θ is the model parameters, a.k.a. the feature weights;
Z(x; θ) is the normalization factor which sums over all
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TABLE I
POS TAGGING FEATURE TEMPLATES FOR f (x, i, t′, t)

01: t ◦ t ′ 02: t ◦ wi

03: t ◦ wi−1 04: t ◦ wi + 1

05: t ◦ wi ◦ ci−1 ,−1 06: t ◦ wi ◦ ci + 1 , 0

07: t ◦ ci , 0 08: t ◦ ci ,−1

09: t ◦ ci , k , 0 < k < #ci − 1
10: t ◦ ci , 0 ◦ ci , k , 0 < k < #ci − 1
11: t ◦ ci ,−1 ◦ ci , k , 0 < k < #ci − 1
12: if #ci = 1 then t ◦ wi ◦ ci−1 ,−1 ◦ ci + 1 , 0

13: if ci , k = ci , k + 1 then t ◦ ci , k ◦ ′′consecutive ′′

14: t ◦ prefix(wi , k), 1 ≤ k ≤ 4, k ≤ #ci

15: t ◦ suffix(wi , k), 1 ≤ k ≤ 4, k ≤ #ci

TABLE II
DATA STATISTICS

#sentences #tokens w/ #tokens w/
C T B tags P D tags

C T B train 16,091 437,991 –
dev 803 20,454 –
test 1,910 50,319 –

P D train 46,815 – 1,097,839
train-large 253,722 – 5,936,076

dev 2,000 – 46,182
test 5,000 – 118,714

conversion 1,000 5,769 27,942

possible sequences t in the search space in order to guaran-
tee that probabilities of all sequences sum to one.

Z(x; θ) =
∑

t

eScore(x,t;θ) (2)

Score(x, t; θ) is the score of a specific tag sequence t given
x, which factorizes into bigram scoring parts according to the
linear-chain Markovian assumption.4

Score(x, t; θ) = θ · f(x, t)

=
n+1∑

i=1

θ · f(x, i, ti−1 , ti)
(3)

where f(x, t) is the accumulated feature vector of t given x.
Based on the Markovian assumption, f(x, t) is then factor-
ized into bigram features for the sake of efficient inference.
f(x, i, t′, t) is the bigram feature vector for tagging wi−1 as t′ and
wi as t. t0 = START and tn+1 = STOP are two pseudo tags
which mark the start and end position of the sentence. We adopt
the state-of-the-art tagging features in [5], [29], as shown in Ta-
ble I, where ◦ means string concatenation; ci,k denotes the kth

Chinese character in the word wi ; ci,0 is the first Chinese charac-
ter; ci,−1 is the last Chinese character; #ci is the total number of
Chinese characters contained in wi ; prefix/suffix(wi, k) denote
the k-character prefix/suffix of wi .

Suppose the training data isD = {(xj , tj )}N
j=1 , meaning that

tj is the gold-standard POS tag sequence of xj . Then the log

4Most previous work on POS tagging uses bigram features, since extra usage
of trigram is much slower yet brings little accuracy improvement.

likelihood of the training data is defined as follows.

L(D; θ) =
N∑

j=1

log p(tj |xj ; θ)

=
N∑

j=1

(Score(xj , tj ; θ) − log Z(xj ; θ)) (4)

To maximize this log likelihood function, we take its partial
derivation with regard to θ.

∂L(D; θ)
∂θ

=
N∑

j=1

(
f(xj , tj ) −

1
Z(xj ; θ)

∂Z(xj ; θ)
∂θ

)

=
N∑

j=1

(
f(xj , tj ) −

∑

t

p(t|xj ; θ)f(xj , t)

)

=
N∑

j=1

(
f(xj , tj ) − Et|x;θ [f(xj , t)]

)
(5)

where f(xj , tj ) is explained as the empirical counts of the fea-
tures in the gold-standard reference tj , whereas Et|x;θ [f(xj , t)]
is the feature expectations for xj under the current model
θ. Naively computing the feature expectations requires enu-
merating an exponentially increased search space (O(|T |n )).
Fortunately, the feature expectations can be further factorized
according to the Markovian assumption defined in Eq. (3):

Et|x;θ [f(x, t)] =
∑

t

p(t|x; θ)

(
n+1∑

i=1

f(x, i, ti−1 , ti)

)

=
∑

t

(
n+1∑

i=1

p(t|x; θ)f(x, i, ti−1 , ti)

)

=
n+1∑

i=1

(
∑

t

p(t|x; θ)f(x, i, ti−1 , ti)

)

=
n+1∑

i=1

∑

(t ′,t)∈T 2

f(x, i, t′, t)

×

⎛

⎝
∑

t:ti−1 =t ′,ti =t

p(t|x; θ)

⎞

⎠

=
n+1∑

i=1

∑

(t ′,t)∈T 2

f(x, i, t′, t)p(i, t′, t|x; θ) (6)

where p(i, t′, t|x; θ) is known as marginal probability of a local
bigram clique in Markov random field models, namely tagging
wi−1 as t′ and wi as t. Using the classic Forward-Backward
algorithm, we can compute all bigram marginal probabilities in
polynomial time of O(n|T |2). Given all marginal probabilities,
we can then compute feature expectations in Eq. (6) in O(n|T |2)
time.
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III. MAPPING BETWEEN CTB/PD ANNOTATIONS

This section describes the differences between the annotation
guidelines of CTB and PD, and then proposes four different
sets of mapping rules for converting a one-side tag into a set of
bundled tags as ambiguous labeling.

A. Annotation Heterogeneity

Based on the Penn Chinese Treebank Project, CTB is built
to create a Mandarin Chinese corpus with syntactic bracketing
[15]. PD is annotated by Institute of Computational Linguistics
at Peking University, with the purpose of building a large-scale
corpus with word segmentation, POS tagging, and phonetic no-
tations to facilitate Chinese information processing [16].

The most fundamental difference between CTB and PD is
that they adopt different annotation principles. For a focus word,
CTB uses the syntactic role that the word takes in the sentence
as the main criterion for deciding its POS tags. In other words, a
word can have different tags in different contexts. For example,
the frequently used auxiliary word “ ” is annotated according
to its specific syntactic roles into four different tags: “DEG”
(translated into “of”, as possessive marker), “DEC” (translated
into “that”, as relative-clause marker), “SP ” (as sentence-final
particle), and “AS” (as aspect marker). Another example is
“ ”, which is tagged as “V V ” (translated into “develop”) or
“NN” (translated into “development”) according to the context
in use. It is natural that CTB adopts such annotation principle,
because in this way POS tags can best support higher-level
syntactic annotations.

In contrast, based on our observations and some implicit dis-
cussions in the guideline document, it seems that PD adopts
a quite different annotation principle. First, at the beginning,
the annotation of syntactic structures is not part of the plan in
PD. Therefore, the design of POS tags gives little thought for
syntactic annotation. In other words, the POS tags are not in-
tended to support future syntactic annotation. Function words
are important elements in syntactic structures. However, PD
usually assign a single tag to a specific function word, with-
out distinguishing its different functions according to different
contexts. Take aforementioned auxiliary word “ ” as a concrete
example, which is very important for recovering syntactic struc-
tures, only receives a single tag “u” (auxiliary word) in PD for
all occurrences.5

Another important difference is that PD subdivides proper
nouns into four different categories: “nr” (human names), “ns”
(geographical names), “nt” (names of organization/group/team),
and “nz” (other proper nouns). Contrarily, CTB only uses a sin-
gle tag “NR”. This indicates that PD is more suitable to sup-
port certain higher-level applications like information extraction
which attaches a lot of importance to proper nouns.

5An important exception is that P D uses a specific tag “vn” to denote a verb

used as a noun in a specific context. For example, “ ” is tagged as “v”
(corresponding to “V V ” in CT B) in its ordinary usage, and is tagged as “vn”
(corresponding to “NN ” in CT B) when used as a noun. In this sense, P D
uses “n” to tag ordinary nouns and uses “vn” to tag verbs functioning as nouns,
whereas CT B makes no such distinction and uses only “NN ” for all nouns in
the syntactic sense.

[15] summarizes rough correspondences between CTB and
PD tags (See [15, Table B.3]). However, we find that it is
very difficult to manually build a compact but complete set of
mappings between the two sets of POS tags due to the following
reasons.

1) CTB and PD sometimes have different criteria in word
categorization. For example, “ ” (translated into
“State Council”) is annotated as “nt” in PD, but is tagged
as an ordinary noun “NN” rather than a proper noun
“NR” in CTB. Similarly, PD treats “ ” (translated
into “Chinese” as a language) as “nz”, whereas CTB tags
it as “NN”. This turns many-to-one correspondences into
many-to-many relationships.

2) There are always exceptions outside the designed tag-to-
tag mapping rules, since the mapping relationships are
in many cases word-sensitive or even context-sensitive.
Moreover, there exist a lot of annotation errors in both
CTB and PD. For example, many occurrences of
“ ” (translated into “Xinhua News Agency”) are
wrongly annotated as “NN” rather than its true tag “NR”.

3) In fact, CTB and PD also differ a lot in word segmenta-
tion standard, which leads to many irregularities in map-
ping relationships. In this work, we leave this issue for
future research due to space limitation. Generally speak-
ing, PD usually takes coarser-grained word segmenta-
tions than CTB. For example, “ ” (translated into
“this”), a frequently used string in both data, is treated
as a single word with a tag “r” (pronoun) in PD, but
is segmented into two words “ ” and “ ” tagged as
“DT ” (determiner) and “M” (measure word) respectively
in CTB. As a result, it seems that no single CTB-tag is
perfectly proper for this word “ ” due to granularity
differences in words.

B. Context-Free Tag-to-Tag Mapping Functions

Based on the above analysis and discussion, we can see that
building context-free tag-to-tag mapping between CTB and
PD annotations can be very difficult. However, due to effi-
ciency considerations, mapping one CTB tag to many PD tags
(vice versa) would lead to a huge size of bundled tags and thus
make the coupled model prohibitively slow. Therefore, with
a lot effort, we have designed and investigated four different
mapping functions in this work, which reveals valuable insights
into the coupled model, and is considered as one of the main
contributions of this work.

A mapping function is a set of symmetric mapping rules. Each
mapping rule decides whether one CTB tag (i.e., “NN”) can
be mapped to one PD tag (i.e., “n”). Formally, we denote the
tag set of CTB as T a , and that of PD as T b . Then a mapping
function m : T a × T b → {0, 1} is defined as:

m(ta , tb) =

{
1 if the two tags can be mapped to each other

0 otherwise
(7)

where ta ∈ T a and tb ∈ T b . Alternatively, we can think of a
mapping function as a matrix with 0/1 elements.
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Take Fig. 1 as an example. The word “ ” is manually
tagged as “NN” at the CTB side. Suppose that the mapping
function m tells that “NN” can be mapped into three tags
at the PD side, i.e., “n”, “Ng”, and “vn”. Then, we create
three bundled tags for the word, i.e., “[NN,n]”, “[NN,Ng]”,
“[NN, vn]” as its gold-standard references during training. It
is known as ambiguous labeling when a training instance has
multiple gold-standard labels. Similarly, we can obtain bundled
tags for all other words in sentences of CTB and PD based on
the predefined mapping function m.

After such transformation from a one-side tag to a set of
bundled tags, we can collect from data all possible bundled
tags together, and compose a bundled tag space, denoted as
T a&b . Finally, the two non-overlapping heterogeneous datasets
are now in the same bundled tag space, and each sentence has an
exponential-size set of bundled tag sequences as gold-standard
references during training. It is obvious that T a&b ⊆ T a × T b ,
and a mapping function actually defines a specific bundled tag
space. When the mapping function becomes looser, meaning
that the matrix m contains more 1s instead of 0s, the bundled
tag space size |T a&b | becomes larger.

In the following, we describe the four context-free tag-to-
tag mapping functions that we have designed and investigated
in this work. The full list of mapping rules for each mapping
function is also released for reference.6

1) The tight mapping function (mtight , 145 bundled tags).
We spent about two hours on studying the annotation
guidelines of both CTB and PD, and designed the tight
mapping function which on the one hand produces the
least number of bundled tags, and on the other hand
follows as far as possible the mapping relationships
described in the annotation guidelines, as summarized
[15, Table B.3].

2) The automatic mapping function (mauto , 346 bundled
tags). After seeing the disappointing results with the tight
mapping function (see Figs. 4 and 5), we then tried the
automatic mapping function, and happily found that the
coupled model turned out to be much stronger than the
baseline model. The automatic mapping function is built
as follows. First, we use the baseline TaggerC T B to
process PD-train.7 Then, we collect all the mapping re-
lationships between the gold-standard PD tags and the
automatic noisy CTB tags. Finally, the automatically col-
lected relationships are used as the automatic mapping
function.

3) The relaxed mapping function (mrelaxed , 179 bundled
tags) is a looser version of the tight mapping function in-
cluding 34 more weak mapping relationships. After seeing
the failure of the tight mapping function and the success
of the automatic mapping function, we then designed the
relaxed mapping function, since the coupled model with

6http://hlt.suda.edu.cn/˜zhli/mapping.html
7Alternatively, we could try the opposite direction by using T aggerP D to

tag CT B-train. We could also merge the mapping rules from both directions by
intersection or union. However, we did not try other alternatives since we found
the automatic mapping function worked and achieved very close accuracy to
the complete mapping function, as shown in Figs. 4 and 5.

Fig. 2. Graphical structure of our coupled CRF model.

the automatic mapping function is very inefficient (see
Table V). We add high-frequency bundled tags from the
automatic mapping function into the tight mapping func-
tion. In many cases, we need to find evidences from the
two real datasets before making our decisions.

4) The complete mapping function (mcomplete , |T a | ×
|T b | = 33 × 38 = 1, 254 bundled tags) allows one CTB
tag to be mapped to all PD tags and vice versa. The
complete mapping function leads to a very huge bundled
tag space and makes the coupled model extremely slow.
Nevertheless, we decided to experiment with the complete
mapping function in order to better understand the capa-
bility of the coupled model in learning mappings between
heterogeneous annotations. Thanks to this extra try, we
further propose an online pruning strategy for the coupled
model under complete mapping, which on the one hand
dramatically improves the efficiency of the model and on
the other hand preserves its superior tagging accuracy.

IV. COUPLED POS TAGGING (TaggerC T B&P D )

In the previous section, we illustrate how to transform the
non-overlapping CTB and PD datasets from one-side tags
into bundled tags based on predefined mapping functions. In
this section, we formally introduce our coupled model, including
the model formalization, how to learn from ambiguous labeling,
how to train with two datasets, and the online pruning method.

Given a sentence, the goal of the coupled model is to simulta-
neously predict two POS tag sequences in the form of bundled
tags. The basic idea is treating a bundled tag as a single tag and
letting the CRF-based model learn and infer in the bundled tag
space. Fig. 2 shows the graphical structure of the coupled CRF
model. Compared with the traditional CRF, the only change of
the coupled CRF is assigning a bundled tag to each word instead
of a single-side tag. Then, the score of a bundled tag sequence
is defined as follows, which is a straightforward extension of
Eq. (3).

Score
(
x,
[
ta , tb

]
; θ
)

=

n+1∑

i=1

θ ·

⎡

⎢⎢⎣

f
(
x, i,

[
tai−1 , t

b
i−1
]
,
[
tai , tbi

])

f
(
x, i, tai−1 , t

a
i

)

f
(
x, i, tbi−1 , t

b
i

)

⎤

⎥⎥⎦ (8)

where the first item of the enlarged feature vector is called
joint features, which can be obtained by instantiating Table I by
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replacing ti with a bundled tag [tai , tbi ]; the second and third items
are called separate features, which are based on single-side tags.
Take the CTB sentence (above) in Fig. 1 as an example. Sup-
pose that the word “ ” takes a bundled tag of “[NN,n]”.
Then the 02 feature template in Table I is instantiated into three
features, i.e., “ ”, “ ”, and “ ”, corre-
sponding to the three terms in Eq. (8) respectively. Experiments
below show that the joint features capture the implicit mappings
between heterogeneous annotations, and the separate features
function as back-off features for alleviating the data sparseness
problem of the joint features (see Table VIII).

A. Training With Ambiguous Labeling

After transformation based on a predefined mapping func-
tion, as described Section III, the non-overlapping CTB and
PD datasets lie in the same bundle tag space. However, the re-
maining issue is that each word typically has multiple bundled
tags as its gold-standard references, instead of a single tag in tra-
ditional supervised learning, as shown in Fig. 1. Formally, given
an input sentence x = w1 . . . wn , the word wi is annotated with
a set of bundled tags, denoted as Ti ⊆ T a&b . Then, the sentence
x has an exponential-size set of ambiguous bundled tag se-
quences as its gold-standard references during training, denoted
asV = T1 · · · × Ti × . . . Tn ⊆ T n . This is known as ambiguous
labeling and can be regarded as a weakly-supervised learning
scenario. The next problem is how to make the coupled model
effectively learn its parameters θ (i.e., feature weights) from
such ambiguous labeling.

Based on the idea of [21]–[23], we derive an ambiguous
labeling-oriented training objective function for the CRF-based
coupled model, and then apply standard stochastic gradient de-
scent to iteratively learn the model parameters. We introduce
the objective function and the derivations of its gradient in the
following.

Given an input sentence x and a set of bundled tag sequence
V as defined above, the probability of V is naturally the sum of
probabilities of all tag sequences contained in V:

p(V|x; θ) =
∑

t∈V
p(t|x; θ) =

Z ′(x,V; θ)
Z(x; θ)

Z ′(x,V; θ) =
∑

t∈V
eScore(x,t;θ) (9)

where Z(x; θ) is the same normalization factor as Eq. (2);
Z ′(x,V; θ) can be regarded as a constrained normalization fac-
tor that only sums over the constrained space V , and will be
used several times in the following derivations.

Suppose the training data is D = {(xj ,Vj )}N
j=1 . Then the

gradient of the log likelihood is:

∂L(D; θ)
∂θ

=
N∑

j=1

(
∂log Z ′(xj ,Vj ; θ)

∂θ
− ∂log Z(xj ; θ)

∂θ

)

=
N∑

j=1

⎛

⎝
∑

t∈Vj

p(t|xj ,Vj ; θ)f(xj , t) − Et|xj ;θ [f(xj , t)]

⎞

⎠

=
N∑

j=1

(
Et|xj ,Vj ;θ [f(xj , t)] − Et|xj ;θ [f(xj , t)]

)
(10)

where p(t|x,V; θ) is the constrained conditional probability of
t given x and V , defined as:

p(t|x,V; θ) =
eScore(xj ,t;θ)

Z ′(x,V; θ)
(11)

which guarantees that the constrained conditional probabilities
of all tag sequences in V sum to one, and all tag sequences
outside V receive zero probabilities. Et|x,V;θ [f(x, t)] is the fea-
ture expectations for x under the constrained search space V .
Et|x;θ [f(x, t)] is the same unconstrained feature expectations
as defined in Eq. (5) and can be computed according to Eq. (6)
with a tiny change that the tag space T becomes the bundled tag
space T a&b decided by the predefined mapping function in the
scenario of coupled tagging.

Similar to the case of computing Et|x;θ [f(x, t)] in Eq. (6),
naively computing the constrained feature expectations
Et|x,V;θ [f(x, t)] requires enumerating an exponentially in-
creased search space of O(|V| = |T1 | × · · · × |Tn |). Similarly,
we can factorize the constrained feature expectations based on
the Markovian assumption defined in Eq. (3):

Et|x,V;θ [f(x, t)] =
∑

t∈V
p(t|x,V; θ)

(
n+1∑

i=1

f(x, i, ti−1 , ti)

)

=
n+1∑

i=1

∑

t ′∈Ti−1 ,t∈Ti

f(x, i, t′, t)

⎛

⎝
∑

t∈V:ti−1 =t ′,ti =t

p(t|x,V; θ)

⎞

⎠

=
n+1∑

i=1

∑

t ′∈Ti−1 ,t∈Ti

f(x, i, t′, t)p(i, t′, t|x,V; θ) (12)

where p(i, t′, t|x,V; θ) is the constrained marginal probability
of tagging wi−1 as t′ and wi as t under the search space V , which
guarantees for any i,

∑

t ′∈Ti−1 ,t∈Ti

p(i, t′, t|x,V; θ) = 1 (13)

By slightly modifying the classic Forward-Backward algorithm,
we can compute all bigram marginal probabilities in polynomial
time of O(nm2), where m = max1≤i≤n |Ti |, meaning the max-
imum number of tags for a word in the search space V .

B. SGD Training With Two Datasets

After computing the weight gradients of the log-likelihood
function, we then apply standard gradient descent procedures to
iteratively learn the feature weights θ. In this work, we adopt
stochastic gradient descent (SGD) with L2-norm regularization
for both the baseline and coupled models. The basic idea is
approximating a gradient with a small batch of b training exam-
ples for feature weight update, as shown in Algorithm 1. Since
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Algorithm 1: SGD training with two labeled datasets.

1: Input: Hyper-parameters: I , N ′, M ′, b

Training data: D(1)
train =

{(
x(1)

j ,V(1)
j

)}N

j=1

D(2)
train =

{(
x(2)

j ,V(2)
j

)}M

j=1

Development data: D(1)
dev , D(2)

dev

2: Output: θ
3: Initialization: θ0 = 0, k = 0
4: for i = 1 to I do {iterations}
5: Randomly select N ′

instances from D(1)
train and M ′ instances from D(2)

train

6: Merge the selected instances as a new dataset Di

7: Shuffle Di

8: Traverse Di , b instances as a batch
9: Db

k ⊆ Di is the current batch, then update as
below.

10: θk+1 = θk + ηk
1
b ∇L(Db

k ; θk )
11: k = k + 1
12: Evaluate θk on D(1)

dev , report first-side accuracy

13: Evaluate θk on D(2)
dev , report second-side accuracy

14: end for

computations among examples in the same batch are mutually
independent, we implement a parallelized version of SGD to
accelerate training.

Different from a traditional supervised learning scenario, we
have two separate non-overlapping training datasets and each
dataset contains one-side tags. Directly merging the two datasets
without corpus-balancing may cause CTB to be overwhelmed
by PD (see Table IV), since PD contains much more sen-
tences than CTB (see Table II). Moreover, when training sta-
tistical models, it is usually beneficial to take smaller steps in
monitoring tagging accuracies on the development datasets. In-
stead of reporting an accuracy after traversing the whole training
datasets, we prefer using a random subset of the training data in
an iteration and reporting an accuracy after each iteration.

Therefore, we propose a simple corpus-weighting strategy,
as shown in Algorithm 1. The algorithm on the one hand has
the flexibility of balancing the number of sentences from each
training dataset in an iteration, and on the other hand monitors
tagging accuracies of the model in smaller intervals. The idea is
to randomly sample instances from each training data in a certain
proportion before each iteration. The sampled data Di is then
used for ith -iteration training. Db

k is a small batch of training
instances used in globally kth -step update; b is the batch size;
ηk is the update step size. In this work, we use b = 30 for all
models based on preliminary experimental results, and follow
the implementation in CRFsuite8 to adjust ηk in a simulated
annealing fashion.

After each iteration, we evaluate the current model on two
development datasets, as shown at line 1 and 1. Since each
dataset has only one-side gold-standard tags, we only report

8http://www.chokkan.org/software/crfsuite/

TABLE III
ONLINE PRUNING WITH DIFFERENT r AND λ

r λ Accuracy (%) Tagging Speed

C T B -dev P D -dev Tokens/Second

2 0.98 94.25 95.03 1278
4 0.98 95.06 95.66 1136
8 0.98 95.14 95.83 365
16 0.98 95.12 95.81 71

8 10−6 91.85 94.35 1461
8 0.10 94.22 95.19 1461
8 0.30 94.56 95.46 1364
8 0.50 94.76 95.63 1278
8 0.70 94.88 95.70 1136
8 0.80 95.04 95.73 1023
8 0.90 95.15 95.79 758
8 0.95 95.13 95.82 465
8 0.99 95.15 95.74 244
8 1.00 95.15 95.76 127

TABLE IV
EFFECT OF DIFFERENT SETTINGS OF CORPUS WEIGHTING

Training data N ′ M ′ Accuracy (%)

C T B -dev P D -dev

CTB-train + PD-train 5K 2.5K 95.15 95.68
5K 5K 95.14 95.83
5K 10K 95.06 95.90

CTB-train + PD-train-large 5K 5K 95.29 96.55
2K 25K 94.78 96.78

tagging accuracy on the single-side tags by ignoring another-
side tags in the output bundled tags. We train each model for at
most I = 1000 iterations, and stop training if tagging accuracies
on both sides do not improve within 30 consecutive iterations.
For final evaluation, we also run the coupled model on two
test datasets, each having only one-side tags. For each side,
we choose the model θk that achieves best accuracy on the
corresponding development dataset with the same-side gold-
standard tags.

Based on findings in our previous work [24], we use N ′ = 5K
and M ′ = 5K as the default setting for merging two training
data in each iteration. We also investigate the use of different
N ′ and M ′ in Table IV.

C. Complete Mapping With Context-Aware Online Pruning

Our study shows that the coupled model with the complete
mapping function achieves the best tagging accuracy, but is
prohibitively inefficient in training and inference. The reason
is that under the complete mapping function, we need to enu-
merate |T a | × |T b | = 1, 254 bundled tags for each word when
computing the feature expectations Et|x;θ [f(x, t)] in Eq. (10).
In contrast, computing the constrained feature expectations
Et|x,V;θ [f(x, t)] according to Eq. (12) is not the bottleneck,
since we only need to enumerate either |T a | = 33 or |T b = 38|
tags for each word.
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Fig. 3. Illustration of online pruning with r = 3 on a P D training sentence.

In order to improve the efficiency of the coupled model, we
propose to approximately compute the feature expectations in
Eq. (10) based on a context-aware online pruning strategy. The
basic idea is considering only a small set of plausible bundled
tags instead of all 1,254 bundled tags according to contextual
evidences on only one-side separate features. Given an input
sentence x, the online pruning strategy works as follows.

1) Apply the Forward-Backward algorithm on only the first-
side tag space T a using the subset of corresponding sep-
arate features f(x, i, tai−1 , t

a
i ) defined in Eq. (8) and the

current feature weights θk .
2) For each word wi , compute the marginal probabil-

ity p(i, ta |x; θ) for all ta ∈ T a , which is similar to
p(i, t′, t|x; θ) in Eq. (6).

3) For each word wi , keep r tags with the highest marginal
probabilities as its candidate tags, denoted as T a

i .
4) Similarly, we can get the second-side candidate tags T b

i

for wi by running through the above three steps with the
second-side separate features f(x, i, tbi−1 , t

b
i ).

5) We define the Cartesian product T̃i = T a
i × T b

i as the set
of possible tags for wi in computing the feature expecta-
tions Et|x;θ [f(x, t)].

6) Suppose the training sentence x has the first-side gold-
standard tags ťa , meaning that the manually labeled first-
side tag of wi is ťai . Then we define the Cartesian prod-
uct Ti = {ťai } × T b

i as the gold-standard ambiguous tags
for wi in computing the constrained feature expectations
Et|x,V;θ [f(x, t)]. Analogously, we can generate Ti when
x has the second-side gold-standard tags ťb .

To illustrate the operations in Step (5) and (6) more clearly,
we define Ṽ = T̃1 × · · · × T̃n and V = T1 × · · · × Tn . Then,
the gradient of the log-likelihood function in Eq. (10) can be
precisely rewritten as follows, which is the feature expectations
under the constrained space V minus those under Ṽ .

∂L(D; θ)
∂θ

=
N∑

j=1

(
Et|xj ,Vj ;θ [f(xj , t)] − Et|xj ,Ṽj ;θ [f(xj , t)]

)

(14)

Fig. 3 shows an example of online pruning with r = 3 on a
PD training sentence. The marginal probabilities of single-side
tags are computed based on corresponding separate features.
We only keep the most likely r tags for each side to compose
bundled tags, which is further used as the possible bundled

tags for the word when computing the second term in Eq. (14).
Since the gold-standard tag of the word is known to be “v”, the
corresponding three bundled tags, marked in bold font, are used
as gold-standard references when computing the first term in
Eq. (14).

Regarding time complexity, Step (1–4) requires roughly the
same operations as two baseline models; Step (5) needs to run
Forward-Backward in the search space of Ṽ , thus has a time
complexity of O(nr4), whereas Step (6) runs in the search space
of V , thus has a time complexity of O(nr2). Our experiments
show that raising r = 8 to 16 leads to no further accuracy gain
for our task (see Table III), and online pruning greatly improves
both training and inference efficiency with little accuracy loss
when r = 8.

Beside r, we use another hyper-parameter λ to further reduce
the number of one-side tag candidates. The intuition is that in
many cases, especially when the model becomes strong after
trained for several iterations, we may only need to use r′ (<
r) most likely candidate tags, since the remaining tags have
too small probabilities. Therefore, for each word, we define r′

as the smallest number of most likely candidate tags whose
accumulative probability is larger than λ. Then, we only keep
the min(r′, r) most likely candidate tags for this word. Our
preliminary experiments show that λ clearly improves efficiency
but has little effect on tagging accuracy when λ > 0.9 and r = 8.
Based on experimental results, we find that r = 8 and λ = 0.98
are fine for our task in hand.

V. EXPERIMENTS

We conduct experiments on CTB (version 5.1) and PD, as
shown in Table II. We adopt the standard training/dev/test data
split for CTB [30]. For PD, we adopt a different setting of
data split from that in our previous work [24].9 We use the sen-
tences in January as the training data, the first 2,000 sentences in
February as the development data, and the first 5,000 sentences
in June as the test data. Furthermore, to investigate how the
scale of PD affects performance of the coupled model, we use
a large training data, referred to as train-large, by combining
all PD sentences except those in February and the first 5,000
test sentences in June. In all our experiments, unless particu-
larly pointed out, we use PD-train instead of PD-train-large
for training.

To evaluate different methods on the task of annotation con-
version, we have annotated 1,000 PD sentences with CTB tags.
The sentences are randomly sampled and removed from PD
before data split. For each sentence, 20% most ambiguous or

9In our previous work [24], we randomly sample 1,000 and 2,500 sentences
as PD-dev/test. This new data split is actually suggested by a colleague with
two purposes. First, under the previous random data split, we find the coupled
approach can hardly defeat the baseline single-side tagging model on PD-
dev/test, which we believed was because the PD-train and PD-dev/test are
too similar to be further improved over the baseline model. After experiments
on the new data split, we find the accuracy improvement on PD-dev/test is
still marginal (about 0.1%). Furthermore, the guide-feature method is inferior
to baseline method by about 0.2%. Now we realize that the accuracy on PD-
dev/test is just very difficult to improve. The second purpose is to make the
duplication of our experiments and results easier with such data split.
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difficult tokens are selected for manual annotation to save an-
notation effort. The difficulty of a token is measured with its
token-wise marginal probability produced by the baseline CRF
model trained on CTB. The basic assumption is that a word is
more difficult to annotate if its most likely tag candidate gets
lower marginal probability. Please refer to our earlier work [24]
for the detailed annotation process. Finally, we obtain 5,769
words with both CTB and PD tags. The data is also released
with the codes for free research usage.

We use the standard token-wise tagging accuracy as the eval-
uation metric.10 For significance test, we adopt Dan Bikel’s
randomized parsing evaluation comparator [31].11

A. Hyper-Parameter Tuning for the Coupled Model

Tuning r and λ: Table III shows the performance of the cou-
pled model with the complete mapping function and online
pruning under different thresholds r and λ, where r means the
maximum number of candidate single-side tags for each word,
and λ means the accumulative probability threshold for further
truncating the candidates, as illustrated in Section IV-C.

In the first major row, we set λ = 0.98 and find that increas-
ing r from 2 to 8 leads to consistently improved accuracy on
both CTB and PD sides. However, r = 16 does not further im-
prove accuracy, indicating that tags below the top-8 are mostly
very unlikely ones and thus insignificant for computing feature
expectations. In fact, we find that the two models with r = 8
and r = 16 have nearly the same accuracy curves on both CTB-
dev and PD-dev during training. In terms of efficiency, we
also report the tagging speed (tokens processed per second) on
CTB-dev during evaluation phase. It is obvious that the tagging
speed drops when r becomes larger.

Then we set r = 8 and try different λ in the second major row.
We find that λ clearly improves efficiency but has little effect
on tagging accuracy when λ > 0.9. Although λ = 0.9 achieves
similar accuracy but is faster, we still choose λ = 0.98 for later
experiments so that we can compute the feature expectations
more precisely.

Then we gradually decrease λ and find that the accuracies
on both sides consistently drops as well. When λ = 10−6 , the
online pruning strategy always leaves only one CTB tag and
one PD tag. Then the joint features become useless into model,
and the gradients defined in Eq. 14 become unreasonable. This
explains why the accuracies become extremely low on both
sides.

Effect of N ′ and M ′: Table IV shows the results on weight-
ing CTB and PD in different proportions (N ′ CTB sen-
tences and M ′ PD sentences) at each iteration, as illustrated
in Section IV-B.

10To clarify a question asked by a few colleagues, it is necessary to point
out that the coupled CRF is not directly evaluated on bundled tags, since CT B
and P D dev/test data only have one-side gold-standard tags. For instance,
when the coupled model is evaluated on CT B-dev, only the CT B-side tags in
the bundled tags are extracted for evaluation and an accuracy on CT B tags is
reported. Therefore, the comparison between the baseline model and the coupled
model is fair.

11http://www.cis.upenn.edu/˜dbikel/software.html

Fig. 4. Accuracy curve on CT B-dev of the baseline model and the coupled
model with different mapping functions.

We set N ′ = 5 K (5 thousand sentences), and vary M ′ =
2.5 K/5 K/10 K. The finding is similar to our previous work
[24]. Reducing M ′ slightly increases accuracy on CTB-dev
but decreases accuracy on PD-dev. In contrast, enlarging M ′

leads to improved accuracy on PD-dev but decreased accuracy
on CTB-dev.

We also conduct experiments with PD-train-large. We set
N ′ = 2 K and M ′ = 25 K (about 10% of the whole training data)
to mimic the setting of directly merging the two training data.
Comparing with N ′ = M ′ = 5 K, accuracy on CTB-dev drops
by 0.51% whereas accuracy on PD-dev increases by 0.23%.
This is consistent with our intuition that the much larger-scale
PD would overwhelm CTB without corpus-weighting.

Based on the above results, we adopt N ′ = 5 K and M ′ = 5 K
in all other experiments.

B. Comparison of Mapping Functions

Fig. 4 shows the accuracy curves on CTB-dev of the baseline
model and the coupled model with different mapping functions.
For better comparison, the baseline model is also trained us-
ing 5K CTB-train sentences in each iteration. Please note that
for each curve we only draw one peak point in every 10 iter-
ations, where the y-axis is the peak accuracy and the x-axis is
the corresponding iteration number. We find it is a nice way to
clearly present the results. The coupled model using the com-
plete mapping function without online pruning is very slow
and not completed in training. We will update the results when
available.

We can see that, contrary to our intuitive assumption, using
the tight mapping function leads to slightly worse accuracies
than the baseline model. The relaxed mapping function out-
performs the tight function by a large margin. The automatic
function works slightly better than the relaxed one. The com-
plete mapping function without online pruning achieves similar
accuracy to the automatic mapping function. Surprisingly, the
complete mapping with online pruning even slightly outper-
forms the one without online pruning by a small margin. Since
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Fig. 5. Accuracy curve on P D-dev of the baseline model and the coupled
model with different mapping functions.

TABLE V
COMPARISON OF DIFFERENT MODELS AND MAPPING FUNCTIONS ON DEV DATA

Accuracy (%) Speed

C T B -dev P D -dev Toks/Sec

Complete (w/ Pruning) 95.14 (+0.86) 95.83 (+0.11) 365
Complete (w/o Pruning) 94.95 (+0.67) 95.63 (-0.09) 3
Automatic 94.91 (+0.63) 95.72 (—) 33
Relaxed 94.81 (+0.53) 95.62 (-0.10) 127
Tight 94.29 (+0.01) 95.33 (-0.39) 232

Guide-feature CRF 94.81 (+0.53) 95.45 (-0.27) 584

Baseline CRF 94.28 95.72 1573

the coupled model under the complete mapping function with-
out online pruning is very slow, we throw away all features with
frequency less than 3 before training. For other coupled models,
we use all features for training.

Fig. 5 presents the accuracy curves of different models on
PD-dev. The overall trend is similar to that in Fig. 4. The main
difference is that the baseline model is very strong on PD,
and the coupled models achieve very little accuracy gain. The
coupled model with the tight mapping function is much worse
than the baseline. Using the relaxed mapping function leads to
large improvement but is still slightly worse than the baseline.
Using the automatic mapping function achieves nearly the same
accuracy with the baseline. Finally, the coupled model using the
complete mapping with online pruning is slightly better than the
baseline.

Table V summarizes different models and mapping functions
in terms of both peak accuracy and tagging speed. The coupled
model using complete mapping function with online pruning
achieves best accuracies on both CTB-dev and PD-dev. It
outperforms both the baseline and guide-feature based models.
For the guide-feature based CRF, we re-implement the method
described in [18]. In terms of efficiency, we can see that online
pruning boosts tagging speed by two magnitudes, making the

TABLE VI
COMPARISON OF TAGGING ACCURACIES ON TEST DATA

Accuracy (%)

C T B -test P D -test

Coupled CRF 94.74 (+0.67†‡) 95.95 (+0.13†‡)
Guide-feature CRF 94.35 (+0.28†) 95.63 (-0.19†)
Baseline CRF 94.07 95.82
Best reported [30] 94.60 —

coupled model 120 times faster than the one without online
pruning, and comparable with the baseline model.

Our findings are summarized as follows.
1) The coupled model achieves higher accuracy with more

relaxed mapping functions. In fact, the results suggest
that the complete mapping function works best, indicat-
ing the coupled model effectively learns the implicit map-
pings between heterogeneous annotations without relying
on a carefully designed mapping function. Section V-F
presents more discussions on this issue.

2) Online pruning greatly boosts the tagging speed of the
coupled model with the complete mapping function by
two magnitudes without accuracy loss.

3) The coupled model achieves only small accuracy gain over
the baseline on PD. We believe the reason is that the scale
of PD-train is large enough, making the baseline model
too strong to defeat. In fact, the guide-feature based model
achieves lower accuracy (−0.27%) on PD-dev than the
baseline (+0.53 on CTB-dev in contrast). Section V-E
presents more analysis on the effect of the scale of
PD-train.

C. Final Results on Test Data

Table VI presents results on the test data. The coupled model
uses the complete mapping function with online pruning. The
best reported result on CTB is from [30], which jointly mod-
els Chinese POS tagging and dependency parsing. † means the
corresponding approach significantly outperforms the baseline,
whereas ‡ means the accuracy difference between the guide-
feature based model and the coupled model is significant. The
significance test results are gained at a confidence level of
p < 0.005. We can see that the coupled model significantly
outperforms both the baseline and guide-feature CRFs on both
test datasets.

D. Results on Annotation Conversion

We evaluate different methods on the annotation con-
version task using our newly annotated 1,000 sentences in
PD-conversion. Given an input sentence and its source-side
gold-standard tags, annotation conversion aims to predict the
another-side tags. In our specific case, the gold-standard PD-
side tags are provided, and the goal is to obtain the CTB-side
tags. The performance is measured on the 5,769 words having
manually annotated CTB-side tags.
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TABLE VII
P D-TO-CT B CONVERSION ACCURACY ON THE P D-CONVERSION DATA

Conversion Accuracy (%)

Coupled CRF 94.02 (+3.76) †‡
Guide-feature CRF 92.96 (+2.70) †
Baseline CRF 90.26

TABLE VIII
FEATURE STUDY ON THE COUPLED MODEL WITH RELAXED MAPPING

FUNCTION

Accuracy (%)

C T B -dev P D -dev

Coupled (w/ all features) 94.81 (+0.53) 95.62 (−0.10)
Coupled (w/ separate features) 94.27 (−0.01) 95.64 (−0.08)
Coupled (w/ joint features) 92.16 (−2.12) 94.42 (−1.30)
Baseline CRF 94.28 95.72

Our coupled model can naturally perform annotation conver-
sion based on constrained decoding. The idea is that during
decoding, the model only considers the bundled tags that com-
patible with the gold-standard PD-side tags. Specifically, dur-
ing online pruning, we directly use the gold-standard PD-side
tag sequence as the candidate tags (r = 1), whereas only the
CTB-side tags are pruned as usual.

For the guide-feature based method, we feed into the model
the gold-standard PD-side tags to compose guide features. The
baseline model does not use the gold-standard PD-side tags at
all. Table VII shows the results. Again, † (vs. baseline) and ‡
(vs. guide-feature model) represent the significance test results
at a confidence level of p < 0.005. The POS tagging accuracy on
this data is much lower than those in Table VI, because the 5,769
words used for evaluation are 20% most ambiguous tokens in
each sentence. We can see that the coupled model significantly
outperforms both the baseline and guide-feature based models
by a large margin on the task of annotation conversion.

E. Analysis

In this section, we analyze the coupled model from different
perspectives in order to better understand the model. For the
feature study in Table VIII, we adopt the coupled model without
online pruning under the relaxed mapping function, which is
explained in the “Feature study” part. For all other experiments,
we adopt the coupled model with online pruning under the
complete mapping function.

On scale of PD: Fig. 6 shows the accuracy changes of the
baseline and coupled models corresponding to different scales
of PD training data. 250 K means using PD-train-large in
Table II; 50 K means using all sentences in PD-train; 10 K/2 K
means using the first 10, 000/2, 000 sentences in PD-train.

The baseline CTB-model is not affected by the scale of PD
training data. It is clear that the coupled model achieves larger
improvement on CTB-dev over the baseline with larger scalee
of PD.

Fig. 6. Effect of the scale of P D training data in sentence number (thousands).

In contrast, as PD becomes larger, the accuracy gap on PD-
dev becomes smaller between the coupled and baseline models.
This support our earlier arguments on why the coupled model
only achieves slight improvement on PD-dev/test data. Actu-
ally, when using 10K/2K PD training sentences, the coupled
model can get larger accuracy gains on PD-dev (+0.46% and
+1.49%). In other words, results in Fig. 6 indicate that the gains
on PD-dev/test from the coupled approach decline as the base
data (i.e., PD-train) gets larger, which is understandable. How-
ever, we argue that such direct evaluation on PD-dev/test are
misleading and underestimate the gains from the coupled ap-
proach, since D-dev/test are from the same genre/domain with
PD-train, which makes it more challenging to further improve
accuracy over the baseline single-side tagging model. We expect
more gains can be obtained when the coupled model is applied
to open-domain texts.

Feature study: Table VIII investigates individual contribu-
tions of the two kinds of features, namely the joint features
based on bundled tags and separate features based on single-
side tags, as defined in Eq. (8). We adopt the coupled model
with the relaxed mapping function for this study due to two-fold
reasons. First, the coupled model using complete mapping func-
tion is prohibitively inefficient without pruning. Second, under
the online pruning framework, the feature ablation study is not
possible since the separate features are indispensable to perform
pruning.

We can see that when using only separate features, the coupled
model achieves nearly the same accuracies on both CTB-dev
and PD-dev compared with the baseline model. The reason
is that due to the lack of joint features, no connection is built
between the two sets of annotations, and hence no help can be
expected from each other. When using only joint features, the
coupled model becomes largely inferior to the baseline, which
is due to the data sparseness problem for the joint features.
Furthermore, when the two sets of features are combined, the
coupled model achieves large improvements over the baseline
on CTB-dev and slight drop on PD-dev.
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Fig. 7. Accuracy r.w.t. different IV-OOV word categories on CT B-test.

Fig. 8. Statistics for different POS error patterns on CT B-test.

From the results, we can conclude that both joint features
and separate features are indispensable components and com-
plementary to each other in the coupled model.

On in/out-of-vocabulary (IV/OOV) words: Fig. 7 investigates
how the coupled model improves tagging accuracy from the
perspective of IV-OOV word categories. We divide the words
in CTB-test into three word categories: words in CTB-train
(CTB-IV , proportion of 93.8%), words out of CTB-train but in
PD-train (CTB-OOV &PD-IV , 2.0%), and words out of both
CTB-train and PD-train (CTB-OOV &PD-OOV , 4.2%).

The accuracy on CTB-IV words is improved only
by +0.46%. The accuracy improvement is larger on
CTB-OOV &PD-OOV words (+2.72%). The largest gain is
from CTB-OOV &PD-IV words (+6.10%), showing that un-
der the coupled model, an important contribution from hetero-
geneous annotations is that one data (i.e., PD) covers a lot
of annotations for words that are missing in another data (i.e.,
CTB).

On POS tag error patterns: Fig. 8 shows how the coupled
model changes the distribution of a number of high-frequency
POS tag error patterns compared with the baseline model. An
error pattern “X → Y” means that the focus word, whose true
tag is “X”, is assigned a wrong tag “Y”. We choose these error

patterns with largest reduction/increase ratio in number from
the baseline model to the coupled model, and rank them in
descending order of absolute change ratio.

The coupled model achieves the largest reduction ratio
(77.8% error reduction) on “NT → CD” (temporal nouns mis-
tagged as cardinal numbers).

We can also see that the coupled model greatly reduces the
error numbers of both “NR → NN” (proper nouns vs. normal
nouns) and “NN → NR”. This suggests that PD provides
more annotations for resolving “{NN,NR}” ambiguities. A
typical example is “ ” (“Hú Shı̀”, a Chinese person
name), which appears 19 times in CTB-test, but does not appear
in CTB-train. As a result, the baseline tagging model trained on
CTB-train only achieves 8/19 = 42.11% accuracy on this word.
In contrast, the coupled model trained on both CTB-train and
PD-train achieves 18/19 = 94.74% accuracy, simply because
“ ” appears 2 times in PD-train.

The coupled model decreases the number of “V V → NN”
(verb vs. normal noun) by 36.9% percent, but increases the
number of “NN → V V ” by 20.9% percent at the same time.
This indicates that the annotations in PD may be inclined to
assign “V V ” when deciding “{V V ,NN}” ambiguities. Take
“ ” (translated to “develop” as VV, “development” as NN)
as an example. CTB-test contains 63 occurrences of “ ”
and 42 occurrences of “ ”. The baseline model makes
14 mistakes of “ ” and 3 of “ ”,
whereas the coupled model makes 10 of “ ” and
8 of “ ”.

F. Discussion

Regarding this work, many audience and reviewers ask the
same question, that is why the complete mapping works best
for the coupled model whereas the manually designed relaxed
mapping hurts performance. What we find in this work is con-
trary to the common intuition that statistical models usually be-
come stronger when human knowledge is injected into statistical
models.

Our short explanation is that by using the manually de-
signed mapping functions, human knowledge introduces not
only stronger supervision with a smaller answer space, but also
more noise by ignoring special and irregular mappings. In the
case of using the tight mapping function, noise outweighs su-
pervision. As aforementioned, training from ambiguous label-
ing can be regarded as a kind of weakly-supervised learning.
When the mapping function becomes tighter, harder constraints
are imposed on tag mappings, thus producing less bundled tags
for each word. In other words, supervision is stronger in model
training. However, more noise is also introduced at the same
time since the tag mapping relationship between CTB and
PD is too complicated due to many factors as discussed in
Section III-A. As a result, the safe and easy way suggested
by this work is to allow all mappings with the complete map-
ping function, and let the model automatically learn the implicit
mapping relationship.

From another perspective, although the two training datasets
are non-overlapping at sentence level, they share many common
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words, or contexts, or segments (sub-sentences), from which
the coupled model can effectively build connections between
the two tag sets with the help of the joint and separate features,
without referring to any manually designed mapping rules.

The results clearly show that the coupled model can effec-
tively learn the implicit mappings between heterogeneous an-
notations under the complete mapping function. This makes the
coupled model more general and useful, especially with online
pruning for efficiency guarantee. After all, in many cases, it is
very hard to manually summarize the mapping relationships be-
tween heterogeneous annotations for a particular task. Instead,
we may directly use the complete mapping function and let the
model learn from data based on findings in this work.

VI. RELATED WORK

This work is partially inspired by [32], who propose a model
that performs heterogeneous Chinese word segmentation and
POS tagging and produces two sets of results following CTB
and PD styles respectively. Different from our CRF-based cou-
pled model, their approach adopts a linear model, which directly
combines two separate sets of features based on single-side tags,
without considering the interacting joint features between the
two annotations. They adopt an approximate decoding algo-
rithm which tries to find the best single-side tag sequence with
reference to tags at the other side. In contrast, our approach is
a direct extension of traditional CRF, and is more theoretically
simple from the perspective of modelling. The use of both joint
and separate features is proven to be crucial for the success of
our coupled model. In addition, their work indicates that their
model relies on a hand-crafted loose mapping function between
annotations, which is opposite to our findings. The naming of
the “coupled” CRF is borrowed from the work of [33], which
treats the joint task of Chinese word segmentation and POS
tagging as two coupled sequence labeling problems.

[34] propose a shift-reduce dependency parsing model which
can simultaneously learn and produce two heterogeneous parse
trees. However, their approach assumes the existence of data
with annotations at both sides, which is obtained by convert-
ing phrase-structure trees into dependency trees with different
heuristic rules.

This work is also closely related with multi-task learning,
which aims to jointly learn multiple related tasks with the benefit
of using interactive features under a share representation [35]–
[37]. However, according to our knowledge, multi-task learning
typically assumes the existence of data with labels for multiple
tasks at the same time, which is unavailable in our situation.

Our model is similar to a factorial CRF [38], in the sense
that the bundled tags can be factorized to two connected latent
variables. Initially, factorial CRFs are designed to jointly model
two related (and typically hierarchical) sequential labeling tasks,
such as POS tagging and chunking. In this work, our coupled
CRF jointly models two same tasks which have different an-
notation schemes. Moreover, this work provides a natural way
to learn from incomplete annotations where one sentence only
contains one-side labels.

Our work is also related with the problem of domain adapta-
tion. [39] proposes an interestingly simple yet effective approach

to domain adaptation where we have two labeled datasets from
different domains but share the same label set, i.e., a large-scale
source data and a small-scale target data. [40] tackle a similar
problem as [39] except that the two datasets have disparate label
sets. They first derive tag embedding via canonical correlation
analysis (CCA), which is then used for computing tag similar-
ities and mapping different tag sets into the same tag space.
Then, they propose a new transfer approach that uses source
domain data to pre-train their Hidden-Unit CRF to get good
initialization of a part of parameters.

Learning with ambiguous labeling are previously explored for
classification [21], sequence labeling [22], parsing [23], [41]–
[43]. Recently, researchers propose to derive natural annotations
from web data, and then transform them into ambiguous labeling
to supervise Chinese word segmentation models [11]–[13].

Last but not least, although this works focuses on POS tagging
as a case study, our proposed approach in this paper can be easily
applied to other sequence labeling problems in NLP, e.g., NER
[2], semantic slot filling [44], and mention detection [4], as long
as there exist multiple heterogeneously labeled data for the task.

VII. CONCLUSION

This paper proposes an effective coupled sequence labeling
model for exploiting multiple non-overlapping datasets with het-
erogeneous annotations. To solve the efficiency issue, we also
propose a context-aware online pruning approach for approxi-
mate gradient computation. We conduct experiments on the task
of Chinese POS tagging, using two large-scale labeled data, i.e.,
CTB and PD. Results show that our proposed coupled model
significantly outperforms the baseline and guide-feature based
methods on accuracy of both one-side POS tagging and anno-
tation conversion, and have comparable tagging speed as well.
Compared with the baseline CRF model, our coupled model
can improve one-side tagging accuracy from 94.07% to 95.74%
(+ 0.67%) on CTB-test, and from 90.26% to 94.02% (+3.76%)
on PD-to-CTB annotation conversion. Especially, we can draw
several interesting findings from this work.

1) The coupled model does not rely on any predefined map-
ping constraints and is able to automatically learn implicit
mappings between heterogeneous annotations.

2) The approximate context-aware online pruning approach
dramatically improves train and inference efficiency with
little accuracy loss.

3) Both the separate features and joint features make indis-
pensable contribution to our coupled model.

4) The coupled model gains most accuracy improvement on
words that are absent in CTB-train but seen in PD-train.

For future, we would like to extend this work in two directions.
First, we will look into whether the proposed coupled model is
effective for other sequence labeling problems where multiple
datasets with heterogeneous annotations exist. Particularly, we
will apply the coupled approach to joint word segmentation
and POS tagging, so that we tackle the issue that CTB and
PD differs in word segmentation standard, which is currently
ignored in this work. The challenge is that the tag space would
be nearly four times larger due to product of character-in-word
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position tags (B/I/E/S) and POS tags, and manually designing a
mapping function seems more impossible.

Second, we would like to extend the coupled model to learn
from more than two heterogeneous annotations, which would be
straightforward without worrying the issue of exploded bundled
tag space thanks to online pruning.
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