HIT Dependency Parsing : Bootstrap Aggregating Heterogeneous Parsers

Meishan Zhang, Wanxiang Che, Yijia Liu, Zhenghua Li, Ting Liu
Research Center for Social Computing and Information Retrieval
Harbin Institute of Technology, China
{mszhang, car, yjliu, lzh, tliu}@ir.hit.edu.cn

Abstract

The paper describes our system of Shared Task
on Parsing the Web. We only participate in
dependency parsing task. A number of meth-
ods have been developed for dependency pars-
ing. Each of the methods adopts very different
view of dependency parsing, and each view
can have its strengths and limitations. Thus
system combination can have great potential
to further improve the performance of depen-
dency parsing. In this work, Bootstrap Aggre-
gating (Bagging) is chosen to combine these
methods. This approach obtains significantly
improvements for dependency parsing, and es-
pecially we achieves a UAS of 93.88%, LAS
of 91.88% on WSJ domain, which is the top
result of all participated systems. We tried to
use unlabeled data offered by this task as well,
and unfortunately we received little improve-
ments through tri-training. Finally, our final
bagging system ranked thirdly of the shared
task.

1 Introduction

Past research works of dependency parsing always
employ a fixed corpus to train and test, achieving
accuracies above 90%. However, the accuracies will
drop drastically when applied to web corpus, which
makes web applications that rely on parsing, such
as machine translation, sentiment analysis and in-
formation extraction suffer a lot. Shared Task on
Parsing the Web (Petrov and McDonald, 2012) is de-
signed to make researchers follow web parsing more
conveniently.

Dependency parsing has been studied intensively
for several years. Many methods have been pro-
posed for it, such as graph-based, transition-based
and constituent-based methods. Graph-based meth-
ods factor a dependency tree into arcs, and pars-
ing is performed by searching for the highest scor-
ing tree. Transition-based methods build a depen-
dency tree through a sequence of shift-reduce op-
erations, given previous decisions and current state,
parsing is performed by greedily choosing the high-
est scoring operate out of each successive parsing
state. Constituent-based methods make uses of a
constituent parser, outputting dependency results by
converting phrase-structures to dependency struc-
tures using a set of rules. Since graph-based and
transition-based methods do not need any formal
grammars whereas constituent-based methods are
based on context-free grammar, thus we can call
the former two kinds as grammar-free methods and
the last as grammar-based methods. All these ap-
proaches adopt very different views of dependency
parsing. Each view has its strengths and limitations.
A natural idea is to combine these methods together.

Sun (2012) systematically study applying Boot-
strap Aggregating (Bagging) to combine heteroge-
neous views in Chinese language processing. In
particular, syntax-free and syntax-based models are
combined to achieve more accurate POS tagging;
grammar-free and grammar-based models are com-
bined to obtain better dependency parsing results.
This research inspires our work here.

In this work, we exploit bagging to combine three
parsers together: Mate parser! (Bohnet, 2010) which

'http://code.google.com/p/Mate-tools/

is a graph-based method, Jun parser which is a
transition-based parser’ (Hatori et al., 2011) and
Berkeley parser® (Petrov et al., 2006) which is a con-
stituent parser.

The POS tags should not be neglected as they are
always indispensable components for dependency
parsing. In general, the performance of dependency
parsing can be improved when the accuracy of input
POS tagging increases. In our system, we employ
stacking to combine the fine-grained POS tagging
results produced by a CRF Tagger, fine-grained POS
tagging results produced by constituent parser and
the coarse-grained POS tagging results produced by
a CRF tagger together.

We tried to utilize unlabeled corpus to further im-
prove the performance of our bagging system as
well. Tri-training (Ming and Zhou, 2005) was ap-
plied to generate automated training corpus for Mate
parser. Although the performance of Mate parser has
an improvement of 0.88%, the performance of our
bagging system receives little improvements.

In the following of this paper, we will describe
our system in detail, and report several experimental
results.

2 System Description

2.1 POS Tagging

POS tags are essential inputs for dependency pars-
ing. The accuracy of POS tagging can influence
the performance of dependency a lot. Normally, if
the accuracy of POS tagging increases, the UAS and
LAS of dependency will increase as well.

Figure 1 shows the flow chart of our POS tag-
ging. Firstly, we obtain two POS tagging results
for each sentence: fine-grained POS tags(t’) pro-
duced by Berkeley parser and coarse-grained POS
tags(t®) produced by a CRF tagger (CRF purse).
Next, these two POS tagging results are used to
produce guiding features in our final CRF tagger
(CRFfine—guide) Which outputs fine-grained POS
tags. Table 1 lists the features employed in our CRF
tagger, where w denotes a word and ¢ denotes the

>We thank Jun Hatori very much for the code of transition
parser shared for us. The pipeline method is exploited in our
system, and we can refer to Zhang and Nivre (2011) for details
of the parser.

*http://code.google.com/p/berkeleyparser/

Basic Features

Wi, WiWi41, WiWi—1, WiWi42, WiWi—2, Wi—1W;W;i+1
Prefix of w; = P, Suffix of w; = S, where | P, S ||< 5
whether w; contains a digit, capitalized

Inlexicon(wo, t), for any possible POS tag ¢

Guide Features

B T8y T U7, B5E5 oy, 8585, E18

Table 1: Feature templates of our CRF tagger.

output POS tag. C RF_,qrse Only uses basic features
and C RFfine—guide uses both features. The lexicon
is extracted from the training corpus when the fre-
quency of pair (w, t) is higher than 5.

/
/ Test Sentence i

‘ CRFcoarse ‘ Berkeley Parser

l l

POS Tags(t°)

/
/ POS Tags(t")

CRFfine-guide

i Final POS Tags /

Figure 1: Flow chart of POS tagging.

During training phase, we use the tool of CRF-
Suite* to learn parameters of CRF Tagger, and the
tool of Berkeley parser to train constituent model.
To generate the training corpus for C RFfine—guides
t* and ¢ are produced via five-fold cross-validation.

2.2 Dependency Parsing

Figure 2 shows the overall framework of our depen-
dency parsing. The box with red dashed line demon-
strates that all the elements inside the box compose
an ensemble system, the fine arrow means that a sin-
gle result is produced by the source, and the thick
arrow means that multiple results are produced by
the source.

The training set of Mate parser and Jun parser is
WSJ training corpus of dependency structure with
auto POS tags which are generated through five-
fold cross-validation by CRFtipe— guide» and Berke-
ley parser uses WSJ training corpus of constituent

*http://www.chokkan.org/software/crfsuite/

POS Tagging

Final Results

POS Result

Figure 2: Workflow of our system.

structure to train models. In the training phase, as-
suming the training set D of size n for Mate parser,
m new training sets D; of size 61.8% x n are gen-
erated by sampling without replacement. Each D; is
separately used to train a Mate model. Thus we can
get m models for Mate parser. Similarly we can get
m models for Berkeley parser and m models for Jun
parser. When decoding, first we can get m results
by Berkeley parser, m results by Mate parser and m
results by Jun parser, and then combine these results
via word-by-word voting.

3 Experiments

3.1 POS Tagging

Table 2 shows how the accuracy of POS tagging in-
fluences the result of dependency parsing on we-
blogs developing set. The dependency parsing
model was kept unchanged, and it was trained
by Mate with automated POS tags. We com-
pare following POS taggers: MXPOST (Ratna-
parkhi, 1996), Stanford POS Tagger (Toutanova et
al., 2003), Berkeley parser, CRF POS tagger(only
basic features are used), CRFfpeguide and GOLD. As
is shown in Table 2, the performance of dependency
parsing improves as the accuracy of POS tagging in-
creases except one case.

POS tagger Pos UAS LAS

MXPOST 93.52 88.04 84.67
Stanford POS tagger | 94.14 88.43 85.27
Berkeley parser 9424 89.24 86.08
CRF POS tagger 94.61 8892 85.86
CRFﬁne-guide 95.04 89.42 86.42
Gold 100 90.95 88.96

Table 2: Relation between POS tag and dependency pars-
ing.

Table 7 displays the final POS tagging accuracies
on the six domains’ testing section.

3.2 Dependency Parsing

Firstly, we show the performance of the bagging
on WSJ developing set in Table 3. The bagging
times m is set to nine here. baseline denotes the
model trained on the whole WSJ training corpus.
We can see that bagging is very effective to improve
the performance of dependency parsing. Secondly,

method | UAS LAS
Berkeley basel.ine 92.33 89.90
bagging | 93.44 91.17
Mate baseline | 92.59 90.27
bagging | 92.90 90.62
Jun baseline | 91.53 -
bagging | 91.88 -

Table 3: Performance of bagging models on WSJ devel-
oping set.

we show the performance of the multi-view bagging
model on WSJ developing set in Table 4. Multi-view
bagging means that we employ one more parsers
during the bagging, similarly the concept can be ex-
tended to one-view bagging, two-view bagging and
three-view bagging.

weighting UAS LAS
one-view bagging B 93.44 91.17
two-view bagging B:M(5:4) 94.16 92.09
three-view bagging | B:M:J(5:3:1) | 94.21 91.99

Table 4: Performance of multi-view bagging model on
WSJ developing set. B denotes Berkeley parser, M de-
notes Mate parser and J denotes Jun parser. 5:4 and 5:3:1
denotes the best weight during voting respectively.

In the end, The three-view bagging is chosen as
our final system which we use HITp,sjine to denote.
We give the results of the system on the six domains’
testing section in Table 7.

3.3 Utilization of Unlabeled Corpus

We also tried to utilize the unlabeled data to improve
the final performance of our system via tri-training.
Let L denote the labeled data set and U denote the
unlabeled data set. Assume that three parsers P,
P, and P5 have been trained on L. Each iteration if
the output results of P, agree on that of P5 for one
sentence, then the sentence with the output results
is added to training data set of ;. It is similar to
obtain the automate training data of P, and Ps.

As Berkeley parser needs corpus of constituent
structures to train and it is hard to transform depen-
dency structures to constituent structures, we can’t
generate training corpus for it. We only did a try
to generate auto-labeled training corpus for Mate
parser since the performance of transition parser was
not good. If the dependency structures without la-
bels of transition parser are consistent with that of
Berkeley parser, the auto-parsed result of Berkeley
parser was added to training set of Mate parser. Ta-
ble 5 shows the performance of one-view bagging
model for Mate parser on weblogs and emails devel-
oping set. Mate Bagging,, .;i,. denotes the single-
view bagging model of Mate parser with only gold
training corpus, and Mate Bagging,,.i, denotes the
model with additional auto labeled corpus.

corpus method UAS LAS
. Mate Bagging,, i | 82.00 77.75
emails it Bagging,,.,. | 8243 7842
Mate Bagging, i | 89.55 86.51

weblogs e Bagging,, ., | 9042 87.50

Table 5: Tri-training Result on emails developing set.

As is shown in Table 5, the values of LAS ob-
tains an average improvement of 0.88%. However,
the performance doesn’t always achieve such a gain
on the three-view bagging model which is shown in
Table 6. HIT jo4in denotes our final three-view bag-
ging system with additional auto labeled corpus.

Finally, we give the results of our system on the
six domains’ testing section in Table 7. We can see
that the improvements after applying tri-training are

corpus method UAS LAS

emails HITvaseiine | 83.94 79.71
HITdomain 83.63 79.48

Weblogs HITbaseline 91.35 88.52
HITdomain 91.51 88.65

Table 6: Tri-training Result on emails and weblogs de-
veloping set.

non-significant.

Corpus Method LAS UAS POS
answers HITbasetine | 80.75 85.84 90.99
HITgomain | 80.79 85.86 90.99
emails HITvasetine | 78.94 8321 88.79
HITdomain | 78.58 82.79 88.79
newsgroups HITbasetine | 8526 88.90 92.32
HITgomain | 85.18 88.81 92.32
reviews HITbasetine | 81.60 86.60 90.65
HITdomain | 81.92 86.80 90.65
weblogs HITbasetine | 85.91 90.27 93.32
HITdomain 85.89 89.43 93.32
HITvasetine | 91.88 93.88 97.76
WSJ HITdomain 91.82 93.83 97.76

Table 7: Final results of our system.

4 Conclusion

We described our system of Shared Task on Pars-
ing the Web. We exploited a multi-view bagging
method, and obtain the best accuracy on WSIJ testing
corpus. Tri-training is used to generate automated
training set from unlabeled corpus to improve per-
formance of our system on other domains, and un-
fortunately we failed to obtain some gains.

In the future, we will analyze the reason for our
failure to apply tri-training method and try better ap-
proaches for this task.

Acknowledgments

We especially thank Weiwei Sun for her sugges-
tion of bagging for system-combination in this
work. This work was supported by National Natu-
ral Science Foundation of China (NSFC) via grant
61133012, the National “863” Major Projects via
grant 2011AAO01A207, and the National “863”
Leading Technology Research Project via grant
2012AA011102.

References

Bernd Bohnet. 2010. Very high accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational
Linguistics, number August, pages 89-97.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental joint pos tag-
ging and dependency parsing in chinese. In Proceed-
ings of Sth International Joint Conference on Natu-
ral Language Processing, pages 1216—-1224, Chiang
Mai, Thailand, November. Asian Federation of Natu-
ral Language Processing.

Li Ming and Zhi-Hua Zhou. 2005. Tri-training: ex-
ploiting unlabeled data using three lassifiers. IEEE
Transactions on Knowledge and Data Engineering,
17(11):1529-1541.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st In-
ternational Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Com-
putational Linguistics, pages 433-440, Sydney, Aus-
tralia, July. Association for Computational Linguistics.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. In Proceedings of the Empirical Meth-
ods in Natural Language Processing.

Weiwei Sun. 2012. Learning Chinese Language Struc-
tures with Multiple Views. Ph.D. thesis, Saarland Uni-
versity.

Kristina Toutanova, Dan Klein, Christopher Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of HLT-NAACL 2003.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188-193, Portland, Ore-
gon, USA, June. Association for Computational Lin-
guistics.

