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Abstract. Extracting Lives In relations between bacteria and their
locations involves two steps, namely bacteria/location entity recogni-
tion and Lives In relation classification. Previous work solved this task
by pipeline models, which may suffer error propagation and cannot uti-
lize the interactions between these steps. We follow the line of work using
joint models, which perform two subtasks simultaneously to obtain better
performances. A state-of-the-art neural joint model for relation extrac-
tion in the Automatic Content Extraction (ACE) task is adapted to
our task. Furthermore, we propose two strategies to improve this model.
First, a novel relation is suggested in the second step to detect the errors
in the first step, thus this relation can correct some errors in the first
step. Second, we replace the original greedy-search decoding with beam-
search, and train the model with early-update techniques. Experimental
results on a standard dataset for this task show that our adapted model
achieves better precisions than other systems. After adding the novel
relation, we gain a nearly 2% improvement of F1 for Lives In relation
extraction. When beam-search is used, the F1 is further improved by
6%. These demonstrate that our proposed strategies are effective for
this task. However, additional experiments show that the performance
improvement in another dataset of bacteria and location extraction is
not significant. Therefore, whether our methods are effective for other
relation extraction tasks needs to be further investigated.
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1 Introduction

The information of bacteria and their surviving environments is useful in many
areas such as food safety and health sciences. Therefore, extracting bacteria and
their locations has received much research attention in the biomedical natural
language processing (BioNLP) community [2,6,14]. Taking a sentence “The vib-
rios are ubiquitous to oceans.” in the guideline of the Bacteria Biotope (BB)
task at BioNLP shared task (BioNLP-ST) 2016 [3] as an example, the task aims
to extract bacteria entity mentions (e.g., vibrios), location entity mentions (e.g.,
oceans), and Lives In relations (e.g., {vibrios, oceans}) from this sentence.
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This is a typical relation extraction task that involves two steps. First, entity
mentions are recognized and second, each pair of entity mentions is examined,
deciding whether a Lives In relation exists. The first step can be treated as a
named entity recognition (NER) task [7], and the second step can be casted
as a relation classification task [19]. We focus on the line of work using neural
networks, which have achieved state-of-the-art performances for both tasks.

Recently, Miwa and Bansal [13] proposed a neural joint model for relation
extraction in the ACE task1, which can be adapted to our task. Compared with
pipeline models that handle NER and relation classification separately, joint
models can alleviate the problem of error propagation [9]. For example, if the
bacteria or location entity of a Lives In relation is not correctly recognized, this
relation will be definitely lost. Another advantage of joint models is that they
can utilize the interactions between two steps. Miwa and Bansal [13] implicitly
performed it by building the features of the second task based on the outputs
of the first task, and jointly training these features. To enhance the interactions
explicitly, we add a special relation called Invalid Entity, which means that some
entities related to such relation may be incorrectly recognized. If an entity is only
associated with Invalid Entity relations, it will be removed from final results of
entity recognition. Thus, even if there are some wrongly-recognized entities, we
can still correct them by the second step.

Moreover, Miwa and Bansal [13] exploited a greedy left-to-right manner to
predict entity recognition labels incrementally, which may suffer error propaga-
tion among these labels, i.e., the error in the prior prediction can induce new
errors in the subsequent predictions. In this paper, we use beam-search, which
has been successfully applied in other tasks [9,21], to alleviate this problem.

We adapt the model of Miwa and Bansal [13] as our baseline, and verify our
strategies gradually in the BB task at BioNLP-ST 2016 [3], which is a standard
competition for Lives In relation extraction between bacteria and location enti-
ties. Results show that our baseline can achieve state-of-the-art performances for
this task. By adding the Invalid Entity relation, we gain a nearly 2% improve-
ment of F1. When beam-search is used, the F1 is further improved by 6%.

2 Related Work

Extracting Lives In relations between bacteria and location entities belongs to
the line of work on relation extraction. Prior work usually used two-step pipeline
models to handle this task [2,4,14]. First, all possible bacteria/location enti-
ties are recognized using sequence labeling models. Then Lives In relations are
extracted between bacteria/location entity pairs using binary classification mod-
els. We do not exploit this framework because it can easily suffer the error prop-
agation problem. Moreover, the useful interaction information between two steps
is unable to be incorporated.

Our work falls into the line of work using joint models for relation extrac-
tion. Roth and Yih [16] proposed a joint inference framework based on integer
1 https://www.ldc.upenn.edu/collaborations/past-projects/ace.
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linear programming to extract entities and relations. Li and Ji [9] exploited a
single transition-based model to accomplish entity recognition and relation clas-
sification simultaneously. Kordjamshidi et al. [6] proposed a structured learn-
ing model to extract biomedical entities and their relationships. Very recently,
Miwa and Bansal [13] proposed a neural model based on long short-term memo-
ries (LSTMs) [5] to perform relation extraction jointly. This model captures both
word sequence and dependency structure information by stacking tree-structured
recurrent neural networks (RNNs) on sequential RNNs, which allows the model
to share parameters between two submodules of entity recognition and relation
classification. Such method utilizes the correlations between the relevant sub-
tasks for mutual benefit, and outperforms state-of-the-art feature-based model
[9,16]. We follow the work of Miwa and Bansal [13], with extensions of a novel
interaction mechanism and beam-search [9,21].

Our work is also related to neural network models of NER [7], relation clas-
sification [8,12,17–19] and relation extraction [10]. For NER, Lample et al. [7]
exploited RNNs to extract features, which are similar with our neural network
structures for NER. For relation classification, Zeng et al. [19] leveraged convo-
lutional neural networks (CNNs) to classify relations with lexical, sentence and
word position features. Li et al. [8] used the similar framework and features, but
focused on Lives In relation classification between bacteria and their locations.
In particular, our neural network structures of relation classification are similar
with [12,18], which exploited RNNs over the shortest dependency path between
two target entities to extract neural features. For relation extraction, prior work
focused on distant supervised methods using Freebase [10], whose methods and
tasks are essentially different from ours.

3 Baseline

We follow the work of Miwa and Bansal [13] to build our baseline for extracting
bacteria and their locations. Figure 1 shows an example of the analysis process
when a sentence “The vibrios are ubiquitous to oceans.” is given.

3.1 Bacteria/Location Entity Recognition

The model casts bacteria/location entity recognition as a sequence labeling prob-
lem. The output sequence labels are defined to recognize three entity types in our
task with a BILOU scheme [7], where B-Bacteria/B-Habitat/B-Geographical,
I-Bacteria/I-Habitat/I-Geographical and L-Bacteria/L-Habitat/L-Geographical
denote the beginning, following and last words of bacteria/habitat/geographical
entities. U-Bacteria/U-Habitat/U-Geographical denote the only words of corre-
sponding entities, and O denotes that the word does not belong to any type
of entities. Following the task definition [3], we consider that both habitat and
geographical entities are location entities.

Our model predicts the entity label of each word from left to right. Given an
input sentence w1/t1,w2/t2, . . . ,wn/tn, where w denotes a word and t denotes
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Fig. 1. “vibrios” and “oceans” are bacteria and location entities. “POS” denotes part-
of-speech tags. The dotted arrow line denotes a “nsubj” dependency type between
“vibrios” and its governor “ubiquitous”. “O” and “U-Bacteria” denote entity labels,
and “Lives In” denotes a relation label. The left part recognizes bacteria/location enti-
ties by tagging each word with an entity label from left to right incrementally. The right
part determines whether a Lives In relation exists between a pair of bacteria/location
entities by building a dependency tree and extracting features from it.

its POS tag. We represent each wi/ti by concatenating their embeddings, namely
xi = [e(wi); e(ti)]. A bi-directional LSTM-RNN is built based on x1, x2, . . . , xn,
and outputs h1, h2, . . . , hn. hi is selected as one source of features to predict the
entity label li of wi/ti. The label li−1 of last word is selected as another source.
Finally, we concatenate hi and e(li−1), and use a feed-forward neural network
with a hidden layer si and a softmax layer to compute the scores of all entity
labels. The label with the highest score is selected as li for wi/ti.

3.2 Lives In Relation Extraction

Once entity recognition is finished, we start binary relation classification to deter-
mine whether a Lives In relation exists between a pair of bacteria and location
entities. The key idea of the classification is to build a dependency tree whose
root is the lowest common ancestor of two target entities, and model the shortest
dependency path between the ancestor and target entities.

As shown in the right part of Fig. 1, given two target entities a (e.g., vib-
rios), b (e.g., oceans) and their lowest common ancestor c (e.g., ubiquitous) in
the dependency tree. The shortest dependency paths can be formally represented
by {a, a1, . . . , am, c, bn, . . . , b1, b} (e.g., {vibrios, ubiquitous, to, oceans}), where
a1, . . . , am or b1, . . . , bn denotes the words occurred on the path between a and c,
or b and c, respectively. The path can be divided into two parts, where ↑seqa =
{a, a1, . . . , am, c} (e.g., {vibrios, ubiquitous}) and ↑seqb = {b, b1, . . . , bn, c}
(e.g., {oceans, to, ubiquitous}) are bottom-up sequences, and ↓seqa =
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{c, am, . . . , a1, a} (e.g., {ubiquitous, vibrios}) and ↓seqb = {c, bn, . . . , b1, b} (e.g.,
{ubiquitous, to, oceans}) are top-down sequences.

Features are extracted from these sequences by LSTMs. The input of each
LSTM unit is a concatenation of three parts, xi = [hi; e(li); e(di)], where hi is the
output of the LSTM unit for entity recognition in Sect. 3.1. e(li) and e(di) are
the entity label and dependency type embeddings. The last outputs of LSTMs
computing along ↑seqa, ↑seqb, ↓seqa and ↓seqb are ↑ha, ↑hb, ↓ha and ↓hb. Finally,
↑ha, ↑hb, ↓ha and ↓hb are fed into a hidden layer sab, and a softmax layer is used
to compute the scores of all relation labels. The label with the highest score is
selected as the relation type of target entities.

3.3 Training

Both parts of the neural network in Fig. 1 employ the same training algorithm
based on stochastic gradient decent, so we describe their training in one section
for conciseness. The final training objective based on cross-entropy losses is

L( θ ) = −
∑

i

log py +
λ

2
‖ θ ‖22, (1)

where θ denotes all the model parameters, y denotes the gold label of a training
example, py denotes the probability predicted by our model, and λ denotes the
regularization parameter of L2 regularization term. We exploit back propagation
to compute the gradients of model parameters.

4 Our Method

4.1 Invalid Entity Relation

In our baseline, the two subtasks, entity recognition and Lives In relation extrac-
tion, have their own neural network structures, respectively. The two sub-
networks share several common inputs, thus the two subtasks are mutually
affected. In addition, the training losses of relation classification network can
be propagated back into the entity recognition network. All these interactions
are performed implicitly through the sharing of model parameters, because para-
meter weights of both sub-networks are influenced by losses of both subtasks.

However, we aim to make the upper relation classification task help the entity
recognition task explicitly. In the baseline model, the relation classification sub-
module handles two categories, namely Lives In relation and not Lives In rela-
tion. It is built upon the assumption that the given entity pair is a real bacte-
ria/location pair, which cannot be corrected when the entity recognition submod-
ule makes errors. In order to handle this case, we add a relation Invalid Entity
to the relation classification submodule. This relation indicates that at least one
of two target entities recognized in the first step is incorrect. If an entity is only
associated with Invalid Entity relations, it will be removed from final results
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Fig. 2. Training procedure of relation classification. 1: Given a pair of recognized bac-
teria and location entities, we match them with gold entities. 2: If both of them can be
matched, we search their gold relation type in gold relations by entities. 3: A training
example is built with the gold relation type, namely Lives In or not Lives In. 4: If
any of them cannot be matched with gold entities, this entity pair is impossible to
be associated with any gold relation. Therefore, a training example is built with the
Invalid Entity relation type.

Bacteria
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5Entity Set A
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Others
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Fig. 3. Decoding procedure of relation classification. 1: Given a pair of recognized
bacteria and location entities, our model predicts their relation. 2: If the predicted
relation is Invalid Entity, we add two target entities into the entity set A. 3: If the
predicted relation is others (either Lives In or not Lives In), we add two target entities
into the entity set B. 4: The entity set C denotes the set difference (A-B) of set A and
B, so the entities in the set C are only associated with Invalid Entity relations. 5:
Entities in the set C will be removed from the final results of entity recognition, and
the relations related to the entities in the set B can be used as the final results of
relation classification.

of entity recognition. This relation can further help us to correct several errors
made by the entity recognition submodule.

After adding the Invalid Entity relation, the training procedure of entity
recognition does not change but that of relation classification changes as shown
in Fig. 2. Similarly, the decoding procedure of relation classification changes cor-
respondingly as shown in Fig. 3.

4.2 Beam-Search

During entity recognition, our baseline model exploited a greedy left-to-right
manner to assign an entity label to each word. The prediction of next step
requires the entity label of current step. Thus, when the current step is incorrect,
it could influence the result of the next step. This kind of error propagation is
less severe than that of pipeline models, because the parameters of joint models
are trained jointly and the errors could be considered implicitly to some extent.
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1: agenda ← { }
2: for word in sentence
3: beam ← { }
4: for candidate in agenda
5: for label in entity labels
6: score ← Compute(candidate, word, label)
7: beam ← NewCandidate(candidate, word, label, score)
8: agenda ← TopK(beam)
9: best ← Best(agenda)

10: entities ← CreateEntity(best)

Fig. 4. Beam-search decoding for entity recognition.

For each word (i.e., step) in a given sentence, we firstly fetch a history can-
didate prediction in agenda (line 4), and then give a score for each entity label
based on the candidate and the current word (line 6). After that, a new candi-
date prediction is generated and added to beam (line 7). After all the candidates
in agenda have been iterated, we rank the candidates in beam (line 8) by accu-
mulating the entity label score of each word in each candidate, formally by

score(candidate) =
∑

li∈L

score(li) =
∑

li∈L

w · f(li), (2)

where L = {l1, l2, . . . , ln} denotes the entity label sequence of the current can-
didate, w denotes the model parameters and f denotes the feature extraction
function. K-best candidates are stored back into agenda for next step (line 8).
After the last step, we use the best candidate prediction and create entities based
on it (lines 9–10). The advantage of beam-search is that we have multiple choices
at each step, in case that the optimal local prediction is incorrect. The candidate
predictions are ranked by global scores, thus error propagation can be alleviated.

We exploit the early-update strategy [9,21] during training, which has been
widely used with beam-search. The updating of model parameters is performed
at the time when gold-standard results cannot be recovered by the predicted
candidates in the beam. Thus only the losses of partial results are used for back
propagation. In Fig. 4, the early-update strategy is applied immediately after
fetching the k-best candidates in the beam at each step (line 8).

5 Experiments

5.1 Experimental Settings

We conduct experiments on a standard dataset from the BB task at BioNLP-ST
2016 [3], which includes an open competition named BB-event+ner. In this com-
petition, gold entities are not given, so participants need to perform both bacte-
ria/location entity recognition and Lives In relation extraction. The dataset con-
sists of 161 documents from PubMed, and we follow the official method to split
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Table 1. Hyper-parameter settings, where D denotes vector dimensions.

Type Hyper-parameter

Training α = 0.01, λ = 10−8

Embedding D(e(wi)) = 200

D(e(ti)), D(e(di)) or D(e(li)) = 25

Entity Network Structure D(hi) = 200, D(si) = 100

Relation Network Structure D(↑ha, ↑hb, ↓haor↓hb) = 100

D(sab) = 100

the dataset into training, development and test sets. In particular, we remove
the discontinuous and nested entities, in order to fit our models.

For the development set, we use precision (P), recall (R) and F1-score
(F1) to evaluate the performances of entity recognition and relation extraction.
A recognized entity is counted as true positive (TP) if its boundary and type
match those of a gold entity. An extracted relation is counted as TP if its rela-
tion type is correct, and the boundaries and types of its related entities match
those of the entities in a gold relation. For the test set, we use the official evalu-
ation service2, which shows only the overall performance (P, R, F1) of relation
extraction.

Hyper-parameters are tuned based on the development set. In Table 1, α and
λ denotes the learning rate and L2 regularization parameter. “Entity Network
Structure” and “Relation Network Structure” denote the structures of neural
networks for entity recognition and relation classification, respectively. “Embed-
ding” denotes the basic features we used. We use pre-trained biomedical word
embeddings [15] to initial our word embeddings and other kinds of embeddings
are randomly initialized in the range (−0.01, 0.01).

Given a document, we split it into sentences and then tokenize these sen-
tences. All the tokens are transformed into lowercase forms and numbers are
replaced by zeroes. Stanford CoreNLP toolkit [11] is used for POS tagging and
dependency parsing. Neural networks are implemented based on LibN3L [20].

5.2 Development Results

As shown in Table 2, our model improves F1 in bacteria/location entity recogni-
tion by 0.6% after adding the Invalid Entity relation. The performance improve-
ment is mainly due to the growth of precision. A likely reason may be that some
incorrectly-recognized entities are removed. This demonstrates that the relation
classification submodule can help the entity recognition submodule to correct
some errors through the Invalid Entity relation. In addition, the F1-score of
Lives In relation extraction also increases, from 16.3% to 20.3%. It demonstrates
that the Invalid Entity relation can help to boost relation extraction as well. The

2 http://bibliome.jouy.inra.fr/demo/BioNLP-ST-2016-Evaluation/index.html.

http://bibliome.jouy.inra.fr/demo/BioNLP-ST-2016-Evaluation/index.html
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Table 2. Developmental results (%) of the baseline and our proposed methods.

Method Entity recognition Relation extraction

P R F1 P R F1

Baseline 63.6 47.9 54.7 24.2 12.3 16.3

+Invalid Entity 68.8 46.2 55.3 25.0 17.2 20.3

+Beam (4) 69.7 51.8 59.4 27.8 20.9 23.9
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Fig. 5. F1 against the training epoch using different beam sizes for entity recognition.

possible reason is that this relation can divide the non-Lives In relations more
reasonably. Overall, the results demonstrate that Invalid Entity can boost the
performances of both entity recognition and relation extraction.

Figure 5 shows the development results of beam-search, namely the F1 scores
of entity recognition with respect to the training epoches. We experiment with
five beam settings, including beam 1, 2, 4, 6 and 8, where beam 1 denotes
the baseline greedy search. With beam-search (the beam size is larger than 1),
the performance of entity recognition outperforms the baseline method. Accord-
ing to Fig. 5, we set the final beam size by 4, which achieves the best per-
formance. In Table 2, we also show the concrete developmental results of both
bacteria/location entity recognition and Lives In relation extraction. The recall
values of relation extraction are greatly boosted by beam-search, which is sim-
ilar with our Invalid Entity strategy. Actually, we do not use beam-search in
the relation classification phase, thus the main benefit comes from entity recog-
nition, which brings better performances for the overall relation extraction as
well. Overall, beam-search can give a further increase of 3.6% in F1 for relation
extraction.

5.3 Final Results

Table 3 shows the final overall relation extraction results of our models. The
baseline model can obtain 20.7% of F1, and after adding the Invalid Entity
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Table 3. Final results (%) on the test set.

Method Relation extraction

P R F1

Our models

Baseline 46.9 13.2 20.7

+Invalid Entity 46.1 14.9 22.5

+Beam 46.1 20.7 28.5

Other work

LIMSI 19.3 19.1 19.2

UTS 33.1 13.3 19.0

Table 4. Developmental results (%) of the BB 2013 task.

Method Entity recognition Relation extraction

P R F1 P R F1

Baseline 79.3 74.0 76.6 36.3 6.5 11.0

+Invalid Entity 79.9 74.3 77.0 37.3 6.8 11.5

+Beam 81.7 76.2 78.9 28.5 8.1 12.7

relation, F1 is boosted by 1.8%. When beam-search is applied, we can have
a further improvement of 6%, which demonstrates our proposed strategies are
useful. In particular, we find our strategies can mainly contribute to the recall
values, which is consistent with the finding on the development set. Considering
the low proportion of Lives In relations, the recall is highly important.

Moreover, we show the performances of the top-two systems for this task,
namely LIMSI and UTS, which both leverage pipeline models. LIMSI [4] uses
conditional random field (CRF) and post-processing rules to identify men-
tions of bacteria and locations, and support vector machine (SVM) to classify
Lives In relations between two entity mentions. UTS [3] relies on two indepen-
dent SVMs to perform entity recognition and relation classification, respectively.
From Table 3, we can see that they suffer either lower precision or recall.

5.4 Additional Experiments

We also additionally evaluated our method on the subtask 3 of the bacteria
biotope (BB) task [1] in the BioNLP 2013 shared task. The BB 2013 task is
similar with the BB 2016 task [3], and we focused on the extraction of Localiza-
tion relations which represent the same meaning as Lives In relations. The BB
2013 task includes 78, 27 and 26 documents as training, development and test
sets. Since the official evaluation service is unavailable, we used the development
set for evaluation. The experimental settings of the BB 2013 task is identical to
those of the BB 2016 task, and the development results are shown in Table 4.
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If the Invalid Entity relation is added, the precision, recall and F1-score of
entity recognition increase slightly (0.6%, 0.3% and 0.4%), and those of relation
extraction also rise by 1.0%, 0.3% and 0.5% respectively. By utilizing beam-
search, the precision, recall and F1 of entity recognition further increase by 1.8%,
1.9% and 1.9%, and the performance of relation extraction is generally improved
except the precision, declining by 8.8%. Overall, the performance improvement
in the BB 2013 task is not as apparent as that in the BB 2016 task.

6 Conclusion

To extract bacteria and their habitats, we employed a state-of-the-art system
for joint entity and relation extraction. To enhance this system, two extensions
were made. First, we added the Invalid Entity relation to model the conditions
with incorrectly recognized bacteria/location entities. Then we applied beam-
search to replace the greedy decoding. Experimental results on a benchmark
dataset showed that both of our extensions could improve the performance sig-
nificantly. We demonstrate that implicit parameter sharing for joint models is
not enough and greedy decoding also influences the performance of joint mod-
els. However, additional experiments on another dataset showed that the per-
formance improvements were not obvious. Therefore, we need to evaluate our
method on more relation extraction tasks to further demonstrate its effectiveness.
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