
Journal of Artificial Intelligence Research 63 (2018) 923-953 Submitted 07/18; published 12/18

Transition-Based Neural Word Segmentation Using
Word-Level Features

Meishan Zhang mason.zms@gmail.com
School of Computer Science and Technology,
Heilongjiang University, Harbin, China

Yue Zhang frcchang@gmail.com
Westlake University, Hangzhou, China

Guohong Fu ghfu@hotmail.com

School of Computer Science and Technology,

Heilongjiang University, Harbin, China

Abstract

Character-based and word-based methods are two different solutions for Chinese word
segmentation, the former exploiting sequence labeling models over characters and the latter
using word-level features. Neural models have been exploited for character-based Chinese
word segmentation, giving high accuracies by making use of external character embeddings,
yet requiring less feature engineering. In this paper, we study a neural model for word-
based Chinese word segmentation, by replacing the manually-designed discrete features
with neural features in a transition-based word segmentation framework. Experimental
results demonstrate that word features lead to comparable performance to the best systems
in the literature, and a further combination of discrete and neural features obtains top
accuracies on several benchmarks.

1. Introduction

The task of word segmentation is to chunk an input sequence of characters into a word
sequence. For example, given the sentence “中国外企业务发展迅速” (The business of a
foreign company in China develops quickly) in Chinese, the output word sequence can be
“中国 (Chinese) 外企 (foreign company) 业务 (business) 发展 (develop) 迅速 (quickly)”.
Word segmentation is a first step to natural language processing and text mining tasks for
Chinese, Japanese and Thai.

Data-driven word segmentation methods can be categorized into character-based
(Xue, 2003; Tseng, Chang, Andrew, Jurafsky, & Manning, 2005) and word-based (Andrew,
2006; Zhang & Clark, 2007; Sun, Zhang, Matsuzaki, Tsuruoka, & Tsujii, 2009) approaches.
The former casts word segmentation as a sequence labeling problem, using segmentation
tags on characters to mark their relative positions inside words. The latter, in contrast,
ranks candidate segmented outputs directly, extracting both character and full-word fea-
tures. An influential character-based word segmentation model (Peng, Feng, & McCallum,
2004; Tseng et al., 2005) uses B/I/E/S labels to mark a character as the beginning, in-
ternal (neither beginning nor end), end of word and single-character words, respectively,
employing conditional random fields (CRF) to model the correspondence between the input
character sequence and output label sequence. For each character, features are extracted

c©2018 AI Access Foundation. All rights reserved.

Zhang, Zhang, & Fu

character-based word-based

discrete
Peng et al. (2004) Andrew (2006)
Tseng et al. (2005) Zhang and Clark (2007)

neural
Zheng et al. (2013) this work (Zhang et al., 2016)

Pei et al. (2014) Liu et al. (2016)
Chen et al. (2015b) Cai and Zhao (2016)

Figure 1: Word segmentation methods.

from a five-character context window and a two-label history window. Subsequent work
explores different label sets (Zhao, Huang, Li, & Lu, 2006), feature sets (Shi & Wang, 2007;
Zhang, Wang, Sun, & Mansur, 2013) and semi-supervised learning (Sun & Xu, 2011; Wang,
Kazama, Tsuruoka, Chen, Zhang, & Torisawa, 2011), reporting state-of-the-art accuracies.

With the rise of deep learning, neural network models have been investigated for the
character tagging approach. The main idea is to replace manual discrete features with
automatic real-valued features, which are derived automatically from distributed character
representations using neural networks. In particular, convolutional neural network (Zheng,
Chen, & Xu, 2013), tensor neural network (Pei, Ge, & Chang, 2014), recursive neural
network (Chen, Qiu, Zhu, & Huang, 2015a) and long-short-term-memory (LSTM) (Chen,
Qiu, Zhu, Liu, & Huang, 2015b) have been used to derive neural feature representations
from input character sequences, which are fed into a CRF inference layer.

While the above methods leverage deep neural networks over characters for effective
feature derivation, it has nevertheless been shown that additional input features beyond
character embeddings can be useful. For example, Peng et al. (2004) have demonstrated
that word-level features such as (sub)word information are a kind of highly effective features
in a discrete semi-CRF model. Similarly Zhang and Clark (2007) have made full use of word-
level features by using an incremental decoding model. Output word information can also
be directly useful for neural segmentation models.

In this paper, we investigate the effectiveness of word-based neural Chinese word seg-
mentation (Zhang, Zhang, & Fu, 2016; Liu, Che, Guo, Qin, & Liu, 2016; Cai & Zhao, 2016).
Its correlation with existing work on Chinese word segmentation is shown in Figure 1. Since
it is challenging to integrate word features to the CRF inference framework of the existing
character-based methods, we take inspiration from word-based discrete segmentation model
instead. In particular, we follow Zhang and Clark (2007), using a transition-based frame-
work (Zhang & Clark, 2011; Zhou, Zhang, Cheng, Huang, Dai, & Chen, 2017) to segment a
sentence incrementally from left to right, scoring partially segmented results by using both
character-level and word-level features. We replace the discrete word and character features
of Zhang and Clark (2007) with neural word and character representations, respectively, and
change their linear model into a deep neural network. Following Chen et al. (2015b), we
build LSTMs over the input character sequence and the output word sequence, and exploit
the output features for scoring. Similar to Zhang and Clark (2011), beam-search is applied
to reduce error propagation and online large-margin training with early-update (Collins &
Roark, 2004) is used for learning from inexact search. The resulting model is a word-based
neural segmenter that can leverage rich character and word-level features.

924

Neural Word Segmentation

We conduct experiments on several benchmark datasets to thoroughly examine the
effectiveness of neural word features. Results show the effectiveness of word and subword
level features for neural Chinese word segmentation. With pretrained character and word
embeddings, our method achieves state-of-the-art results. In addition, a combination of our
neural features and the traditional discrete features results in further improved performance.
We conduct a number of experimental analysis for deeper understanding our proposed neural
model.

This article is a much extended version of our conference paper (Zhang et al., 2016), with
significant improvements of the neural model and extended discussions. First, we optimize
the neural feature sets for the transition-based model, by exploiting only minimal LSTM
features from characters and words and removing unimportant features. Second, we propose
an improved method to train word embeddings, with which the performance of the neural
model increases significantly. Third, we make comparisons of the max-margin training and
the max-likelihood training, empirically demonstrating that the former is more suitable for
our model. Finally we conduct more analysis for deeper understanding on transition-based
neural segmentation. We make our codes and models publicly available under GPL at
https://github.com/zhangmeishan/NNTranSegmentor.

2. Baseline Transition Based Discrete Model

We exploit the word-based segmentor of Zhang and Clark (2011) as the baseline system,
which adopts the transition-based structural learning framework to formalize the word
segmentation problem. The transition-based framework has been shown effective for a
number of NLP tasks such as POS tagging, syntax parsing and relation extraction (Collins,
2002; Zhang & Clark, 2011; Li & Ji, 2014; Zhou, Zhang, Huang, & Chen, 2015; Andor,
Alberti, Weiss, Severyn, Presta, Ganchev, Petrov, & Collins, 2016).

2.1 The Transition System

The transition-based framework treats word segmentation as a state transition process,
incrementally segmenting a sentence from left to right, where a state represents a partially-
segmented output, and a transition action incrementally processes the segmentation of each
character. A state holds partially-segmented sentence in a stack s and order the next
incoming characters in a queue q. Given an input Chinese sentence, the initial state has an
empty stack and the queue containing all characters of the sentence. A sequence of transition
actions are used to consume characters in the queue and build the output sentence in the
stack. After the incremental processing, we obtain an end state with the segmented sentence
in the stack and no characters in the queue. The end state denotes a full word segmentation
result for the input sentence. The actions include:

• Append (APP), which removes the first character from the queue, and appends it to
the last word in the stack;

• Separate (SEP), which moves the first character of the queue onto the stack as a
new (sub) word.

925

Zhang, Zhang, & Fu

ws1

中国

Chinese

ws0

外企

foreign company

stack
cq0

业

ye

cq1

务

wu

cq2

发

fa

cq3

展

zhan

cq4

迅

xun

cq5

速

su

queueAPP

SEP

(a) An example state, where arrows denote the inserting positions of the next char-
acter (i.e. APP will append the next character onto the end of the last word, and
SEP will insert a space).

step last action buffer(· · ·ws1ws0) queue(cq0cq1 · · ·)
0 - φ 中 国 · · ·
1 SEP 中 国 外 · · ·
2 APP 中国 外 企 · · ·
3 SEP 中国 外 企 业 · · ·
4 APP 中国 外企 业 务 · · ·
5 SEP 中国 外企 业 务 发 · · ·
6 APP 中国 外企 业务 发 展 · · ·
7 SEP · · · 业务 发 展 迅 速
8 APP · · · 业务 发展 迅 速
9 SEP · · · 发展 迅 速

10 APP · · · 发展 迅速 φ

(b) The state-transition process.

Figure 2: The transition system of our model, where the resulting segmented sentence is
“中国 (Chinese) 外企 (foreign company) 业务 (business) 发展 (develop) 迅速
(quickly)”.

Figure 2(a) shows an example state and possible actions could be applied on it. Given
the input sequence of characters “中国外企业务发展迅速” (The business of foreign com-
pany in China develops quickly), the gold-standard output “中国 (Chinese) 外企 (foreign
company) 业务 (business) 发展 (develop) 迅速 (quickly)” can be derived by using action
sequence “SEP APP SEP APP SEP APP SEP APP SEP APP”, as shown in Figure 2(b).
After the state transitions, the word sequence on the final stack is the output.

2.2 Model

Based on the transition system, our baseline segmentation model searches for an optimal
end state STn for a given sentence c1 · · · cn, which is constructed by a certain action sequence
A = a1 · · · an. The model score of a state is calculated as the total score of the actions that
are used to build the state:

score(STn) =

n∑
i=1

score(ai|STi−1), (1)

where score(ai|STi−1) denotes the action score at the ith step, and ST0 · · · STn−1 are the
sequence of intermediate states to reach STn.

926

Neural Word Segmentation

Feature templates Action

cq0−1cq0 , cat(cq0−1)cat(cq0)cat(cq1) APP, SEP

ws0 , ws0ws1 , ws0cq0 , ws1 len(ws0), start(ws0)cs0 , end(ws0)cs1 ,

SEPstart(ws0)end(ws0), end(ws1)end(ws0), ws1 len(ws0), len(ws1)ws0 ,

ws0 , where len(ws0) = 1

Table 1: Feature templates for the baseline model, where wi denotes the word in the stack,
ci denotes the character in the queue, as shown in Figure 2, cat(.) denotes the
category of one character, start(.), end(.) and len(.) denote the first, last character
and length of a word, respectively.

In the baseline segmentation model, the action score can be calculated by:

score(a|ST) = θ · f(ST, a) (2)

where ST and a are a state and a next action, respectively, θ is the model parameter and
f is a feature extraction function. The score models the next action a when current state
ST is given.

Equation 1 can be calculated incrementally. Given one current state STj−1(j ≥ 1), and
the next action aj , the score of the next state STj can be computed by:

score(STj) =

j∑
i=1

score(ai|STi−1)

=

j−1∑
i=1

score(ai|STi−1) + score(aj |STj−1)

= score(STj−1) + score(aj |STj−1).

(3)

The score of all initial states is set as zero (score(ST0) = 0).
Our feature extraction function f is defined according to the set of feature templates

shown in Table 1, which are similar to Zhang and Clark (2011). The features differ by
the action to take. These base features include two main source of information. First,
character level features that can be extracted without knowing the identified words, such
as the first and second characters (c0, c1) on the queue and the top character on the stack
(c−1). These features are used for scoring both separate and append. We also exploit
the category information of characters, where one character is classified into one of the
five categories: Chinese character, letter, punctuation, digit and other. Second, the word
level information that has been identified already is used to guide separate actions. These
extracted atomic features include word forms, lengths (e.g. len(w−1)) and the first/last
characters (e.g. start(w−1) / end(w−1)).

2.3 Search

We follow Zhang and Clark (2011) in using beam-search for decoding, shown in Algorithm
1, where Θ is the set of model parameters (for the baseline model, Θ = θ, the parameter

927

Zhang, Zhang, & Fu

Algorithm 1 Beam-search decoding, where Θ is the set of all model parameters.

function Decode(c1 · · · cn, Θ)
agenda ← { (φ (empty stack), c1 · · · cn (queue), score=0.0) }
for k in 1 · · ·n

list ← { }
for candidate in agenda

new ← Apply(sep, candidate, ck, Θ)
additem(list, new)
new ← Apply(app, candidate, ck, Θ)
additem(list, new)

agenda ← Top-B(list, B)
best ← BestItem(agenda)
w1 · · ·wm ← ExtractWords(best)

vector). Initially the beam contains only the initial state, where φ denotes the empty stack,
and c1 · · · cn denotes the queue containing all sentential characters. At each step, each state
in the beam is extended by applying both SEP and APP, accompanied by the character
in the queue being processed by the two actions, resulting in a set of new states, which are
scored and ranked according to Equation 3. The top B states are used as the beam for
the next step. The same process replaces until all input character are processed, and the
highest-scored state in the beam is taken for output.

2.4 Training

To train the model parameter θ, we exploit online leaning with early-update, using standard
back-propagation algorithm based on two widely-used objective functions, a max-margin
objective and a max-likelihood objective, respectively, which are described in Section 5.

3. Transition-Based Neural Model

We propose to use neural features instead in the same transition system, first representing
atomic features by low-dimensional real vectors, and then using non-linear neural layers
such as LSTMs to compose these features automatically. Thus all features in the neural
segmentation model are dense features, alleviating the feature sparsity problem naturally,
and meanwhile it is free of feature engineering. For better comparison between discrete and
neural features, the overall segmentation framework of the baseline is kept, which includes
the incremental segmentation process, the beam-search decoder and the training process
integrated with beam-search (Zhang & Clark, 2011; Zhou et al., 2017). In addition, the
neural network scorer takes the similar feature sources as the baseline, which includes both
the input character sequence and the partially constructed output word sequence.

The overall architecture of the neural-based scorer is illustrated in Figure 3. Given
a state ST, we use two separate recurrent neural networks (RNN) for feature extraction.
On the one hand, a bi-directional RNN is used to model the input character sequence
c1 · · · · · · cn, and on the other hand a left-to-right RNN is used to model the identified word

928

Neural Word Segmentation

中
c1

x1

h1

国
c2

x2

h2

外
c3

x3

h3

企
c4

x4

h4

业
cq0(q0 = 5)

xq0

hq0

务
cq1

xq1

hq1

......

......

......

word=中国/ws1 word=外企/ws0

x′
s1 x′

s0

h′
s1 h′

s0

v

o

Character
Embeddings

Bi-LSTM

Word
Embeddings

Word LSTM

Non-Linear

Output
Stack Queue

Figure 3: Scorer for the neural transition-based Chinese word segmentation model.

sequence wsm · · ·ws0 . We exploit two dense real-valued vectors hq0 (hidden output of the
next coming character) and h′s0 (hidden output of the last identified word) as source fea-
tures to represent one state, both of which can encode the entire character/word sequences
globally, benefiting from the RNN neural network structure, while our baseline discrete
model is only able to use the local information from a limited window size.

We adopt a non-linear feed-forward neural layer to combine hq0 and h′s0 resulting in a
feature vector v to represent current state ST, which is used to score the next actions. The
feature vector v conceptually corresponds to the discrete feature vector f in our baseline
model. While the baseline model obtains the final feature vector by manual engineering,
the neural model obtains the feature vector automatically. In the following subsection, we
describe our neural network model in detail.

3.1 Feature Representation

The neural networks take the neural representations of words and characters as input, for
extracting hq0 and h′s0 , respectively, and then represent a state by a non-linear composition.
We exploit the LSTM-RNN structure (Hochreiter & Schmidhuber, 1997), which can better
capture non-local syntactic and semantic information from a sequential input, yet reducing
gradient explosion or vanishing during training.

LSTM-RNN. In general, given a sequence of input vectors x1 · · ·xn, the LSTM-RNN
computes a sequence of hidden vectors h1 · · ·hn, respectively, with each ht being determined
by the input xt and the previous hidden vector ht−1. A cell structure c is used to carry long-
term memory information over the history h1 · · ·ht−1 for calculating ht, and information
flow is controlled by an input gate i, an output gate o and a forget gate f . We use the

929

Zhang, Zhang, & Fu

start 中中中

中中中国国国

中 国国国

中 国 外外外

中 国国国外外外

中国 外外外

中中中国国国外外外

中 国 外 企企企

中 国 外外外企企企

中 国外 企企企

中 国国国外外外企企企

中国 外 企企企

中国 外外外企企企

中国外 企企企

中中中国国国外外外企企企

. . .

. . .

. . .

. . .

Figure 4: An example computation graph of word-level LSTM, where each node denotes
one LSTM state, and the last word in the node denotes the input source of the
last step. The entire search space is displayed, which can be pruned by beam
search decoding. The brown thick paths show historical LSTM states with the
gold-standard actions.

LSTM-RNN variation proposed by Gers, Schraudolph, and Schmidhuber (2002) in this
version. Formally, the calculation of ht using ht−1 and xt is:

it = σ(Wixt +Uiht−1 + Vict−1 + bi)

ft = σ(Wfxt +Ufht−1 + Vfct−1 + bf)

ct = ft � ct−1 + it � tanh(Wcxt +Ucht−1 + bc)

ot = σ(Woxt +Uoht−1 + Voct + bo)

ht = ot � tanh(ct),

(4)

where U ,V ,W , b are model parameters, and � denotes Hadamard product.
Encoding characters. To calculate hq0 , the above LSTM structure takes embeddings

of the input character sequence as inputs, i.e. xi = emb(ci), where emb(ci) is obtained
by from a look up matrix Ec. We use left-to-right LSTM and right-to-left LSTMs over

x1 · · ·xn, obtaining
−→
h 1 · · ·

−→
h n and

←−
h 1 · · ·

←−
h n. Then we concatenate

−→
h i and

←−
h i, obtaining

hi =
−→
h i ⊕

←−
h i. For each state, we first locate the position of q0, and then fetch the

corresponding hidden output hq0 .
Encoding words. To calculate h′s0 , the same LSTM structure above is used on the

embedding sequence of existing output words x′
sm · · ·x′

s0 (noting that sm · · · s0 are consec-
utive). x′

si = emb(wsi), where emb(wsi) is taken from a looking-up table Ew. As the word
sequence is built during the decoding progress, only a left-to-right word-level LSTM can be
computed. We use the last hidden output h′s0 of the word LSTM for disambiguation.

The calculation of the word-level LSTM is not as straightforward as the character-level
LSTM since the word sequence is produced incrementally and dynamically. Thus the word-
level LSTM is also built incrementally with each action sequence. Figure 4 shows an example
to illustrate the construction of all possible word LSTM state sequences given the sentence

930

Neural Word Segmentation

“中国外企....”. We can see that a tree-alike structure of LSTM states is constructed. Every
path from the start node to one intermiddle/leaf tree node reflects one sequential left-to-
right LSTM.

State representation. Given hq0 and h′s0 , we obtain the feature representation vector
v for the state ST as follow:

v = tanh(W ′[hq0 ⊕ h′s0] + b′) (5)

where W ′ and b′ are model parameters and ⊕ denotes vector concatenation.

3.2 Scoring Actions

Given the state representation v, the score of a SEP/APP action can be computed by:

o = Wv

score(a|ST) = oa,
(6)

where W is one model parameter, and o is a two-dimensional vector that denotes the
action scores on a certain state, and a ∈ {SEP,APP}. Finally, based on the newly defined
score(a|ST) for the neural model, we can compute the state scores incrementally by using
Equation 3, the same as the baseline discrete model.

3.3 Search and Training

We use the same global learning and beam-search algorithms as the baseline model. Here the
set of model parameters Θ covers the parameters of all neural layers, including embeddings,
character/word-level LSTMs, non-linear feed-forward layer for state representation and the
output layer for action scoring.

3.4 Differences from Zhang et al. (2016)

The neural network structure above has several minor differences compared with the struc-
ture presented in our original conference version (Zhang et al., 2016). First, we simplify the
neural network structures by using the same sources of features for action disambiguation.
For example, the conference version adopts the word LSTM features only for SEP actions,
while in this article we use them for both SEP and APP actions, and the preliminary re-
sults demonstrate that this simplified structure can archive slightly better performances.
The advantage can be further enlarged by exploration of pretrained subword embeddings.
Second, we minimize the sources of features, keeping the model as simple as possible. For
example, we discard the action LSTM features of Zhang et al. (2016), the character type
embeddings, the word length embeddings. We also remove the character-bigram embed-
dings, which has been shown important for Chinese segmentation in previous work (Pei
et al., 2014; Yang, Zhang, & Dong, 2017). Third, we propose a novel effective method to
train word-level embeddings that is capable of handling subwords, which potentially makes
the information from character bigram embeddings be redundant.

931

Zhang, Zhang, & Fu

3.5 Integrating Discrete and Neural Features

Our model can be extended by integrating the baseline discrete features into the feature
layer. In particular,

score(a|ST) = αoa + (1− α)
(
θ · f(ST, a)

)
(7)

where oa and θ · f(ST, a) are the scores produced by the neural features and the discrete
features, respectively, and α ∈ [0, 1] is a factor to scale the two kinds of scores. We use a
simple score addition operation to make integration of these two kinds of features.

4. Embeddings

As described in Section 3, the basic inputs of our neural word segmentation model are
embeddings of characters and words. Such embeddings can be handled using different
methods. A straightforward method is to initialize the embeddings randomly, and fine
tune them along with model training. However, one drawback is that we are only able to
learn effective embeddings for characters and words that occur in the segmentation training
corpus. For low-frequency and out-of-vocabulary (OOV) characters and words, it is difficult
to obtain their embeddings. One common way to solve this issue is to pretrain embeddings
on a very large scale raw corpus (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Levy &
Goldberg, 2014; Pennington, Socher, & Manning, 2014; Peters, Neumann, Iyyer, Gardner,
Clark, Lee, & Zettlemoyer, 2018), which can give embeddings of much larger character/word
vocabularies, and meanwhile avoid the sparsity problem of mapping them into their vector
representations.

We exploit the skip-gram model (Mikolov et al., 2013) to pretrain character and word
embeddings from a large-scale corpus. The key idea is to build a classifier to predict one
unit’s surrounding contexts, where the training examples can be constructed automatically
from raw sequential sentences without any human supervision. The model parameters of
the classifier consist of: (1) the unit embeddings, and (2) the context embeddings. The
pretrained unit embeddings can capture syntactic/semantic information of the vocabulary
units, which are further used as initialization in other supervised models.

4.1 Character Embeddings

The character embeddings are pretrained using the word2vec1 tool (Mikolov et al., 2013).
Give an input raw sentence c1c2 · · · cn, for each character ci, the model extracts several
training examples {< ci, cj >} from the sentence, where j = i±k and (k ∈ [1, c]). And then
a classifier is built, aiming to predict cj based on ci. Standard cross-entropy loss is applied
during training, which can be formalized as:

obj(< ci, cj >,Wcontext,Wsource) = − log Prob(cj |ci)

= − log
exp(µcjν

T
ci)∑

c′ exp(µc′νTci)

= log
∑
c′

exp(µc′ν
T
ci)− µcjν

T
ci ,

(8)

1. http://word2vec.googlecode.com/

932

Neural Word Segmentation

where µc denotes the character embedding as context by looking up from Wcontext, and νc
denotes the character embedding by looking up from Wsource as the classifier input, and
c′ denotes all possible characters. The total number of target categories equals the size of
character vocabulary, which could be very large, thus the negative sampling is applied to
appropriate the denominator.

We pretrain character embeddings on a large raw corpus, and the resulting parameter
Wsource is used to initialize the looking-up matrix Ec in our transition neural model. We
use a context size by k = 2 and the negative example size 5 for word2vec.

4.2 Word Embeddings

We can use the same method described above to pretrain word embeddings. The only
problem is the acquisition of large-scale segmented corpus, whose basic input units are
words. In this work, we use our baseline discrete model to this end. First, we train a
segmentation model by using the same corpus which is used to train the final neural model.
And then we use the model to automatically segment the large-scale raw corpus which is used
for character embeddings. This method is also exploited in our original conference version
(Zhang et al., 2016). Note that the pretrained word embeddings include information from
the baseline segmentation model, which is a statistical segmentor. Thus the exploration
of word embeddings in our model can be viewed as a form of uptraining, which intuitively
demonstrates the effectiveness of our neural model.

There exists one issue when using such word embeddings. In our transition-based neural
model, the last word on the stack is not always a full word, while the auto-segmented corpus
contains only full words. Thus we are only able to pretrain full word embeddings, which
leaves our model uninformed about partial words in the incremental segmentation process,
potentially confusing unfinished words with full words. For example, the resulted embed-
dings do not include the meanings of “中”(China) and “外”(foreign) as prefix subwords
which are intuitively very useful in our neural model. In addition, a number of subwords
which have never occurred as full words are OOV embedding words. One simple method is
to model these subwords by zero vectors, which is used in Zhang et al. (2016). The method
can be problematic because it does not differentiate different subwords.

Subword embeddings. Here we present a novel method to train mixed word/subword
embeddings based on the auto-segmented corpus. Our idea is motivated by the extension
of the skip-gram model by Levy and Goldberg (2014), which allows the model to con-
sider arbitrary context features. Given one segmented sentences w1w2 · · ·wn, the standard
way to pretrain full word embeddings exploiting context features from the surrounding
words. For example, we can construct four context features wi−2, wi−1, wi+1 and wi+2

for word wi. This is equal to the basic method by using the word2vec tool. In order to
pretrain subword embeddings as well, we decompose a full word into prefixes and suffixes
in this article, producing additional sentential sequences with subwords. Given one sen-
tence w1 · · ·wn, assuming that the focus word wi = ci · · · ck · · · cj (j > k ≥ i), we produce
a new sequence with subwords by splitting the word at the inner character position k:
w1 · · ·wi−1wi,pwi,swi+1 · · ·wn, where wi,p = ci · · · ck and wi,s = ck+1 · · · cj . Then we can
extract the following context features to train subword embedding for wi,p: (1)wi−2 ◦ F,
(2)wi−1 ◦ F, (3)wi,s ◦ S and (4)wi+1 ◦ F, and for the fullword wi−1 (other related full words

933

Zhang, Zhang, & Fu

Method Sentence
Example instances for word2vec pretraining
Source Context features

baseline 今年 学术 研研研讨讨讨会会会 如期 举行 研研研讨讨讨会会会 今年◦F 学术◦F 如期◦F 举行◦F

ours

今年 学术 研研研讨讨讨会会会 如期 举行 研研研讨讨讨会会会 今年◦F 学术◦F 如期◦F 举行◦F

今年 学术 研研研 讨讨讨会会会 如期 举行
研研研 今年◦F 学术◦F 讨讨讨会会会◦S 如期◦F
学术 start◦F 今年◦F 研研研◦P 讨讨讨会会会◦S
如期 研研研◦P 讨讨讨会会会◦S 举行◦F end◦F

今年 学术 研研研讨讨讨 会会会 如期 举行
研研研讨讨讨 今年◦F 学术◦F 会会会◦S 如期◦F
学术 start◦F 今年◦F 研研研讨讨讨◦P 会会会◦S
如期 研研研讨讨讨◦P 会会会◦S 举行◦F end◦F

Table 2: Comparison between the baseline word embedding method and our method with
subword embedding pretraining, where the input sentence is “今年(this year) 学
术(academy) 研讨会(seminar) 如期(on schedule) 举行(hold)”. “start” and “end”
are two pseudo words to mark the beginning and ending of a sentene, and here we
focus on the word “研讨会”.

are similar), we extract features (1)wi−3 ◦ F, (2)wi−2 ◦ F, (3)wi,p ◦ P and (4)wi,s ◦ S, where
F, P, S denote full word, prefix and suffix, respectively.

There are three things to note. First, we treat full words and subwords equally when
they are used as source embeddings (Levy & Goldberg, 2014), while as contextual features,
full words, prefix subwords and suffix subwords are treated differently by the corresponding
attribute marks. Second, we only pretrain embeddings for full words and prefix subwords,
since we never use suffix subwords in the transition-based word segmentation models. Third,
in order to have a large coverage, we extract all possible prefix subwords for each word when
pretraining subword embeddings.

Table 2 shows an example to illustrate the differences between the baseline pretraining
method of Zhang et al. (2016) and our improved method with subword pretraining in this
article. We list only several representative instances. For the baseline method, all context
features are full words, and the mark F is just used for clear comparison. We use the
extended word2vec tool2 by Levy and Goldberg (2014) to train the new word embeddings.

5. Training

We exploit online learning with early-update (Zhang & Clark, 2011) to train parameters for
both the discrete and neural models as shown in Algorithm 2. Training is performed over
each training instance. First, we apply a standard beam search algorithm to segment an
input sentence based on current model parameters Θ. For each state in the beam (agenda),
we can derive two subsequent states by applying SEP and APP, respectively. We keep only
the top B states with highest scores. Different from the decoding algorithm of the testing
phase, we add a margin η during decoding if one action is incorrectly predicted, leading to
wrong states with higher scores. The margin ensures the score of the gold-standard action

2. https://github.com/BIU-NLP/word2vecf

934

Neural Word Segmentation

Algorithm 2 Online learning with early-update.

function Train(c1 · · · cn, ag1 · · · agn, Θ)
agenda ← { (φ (empty stack), c1 · · · cn (queue), score=0.0) }
list ← { }
STg

0 ← { φ, c1 · · · cn}
for k in 1 · · ·n

clear(list)
for candidate in agenda

new ← Apply(sep, candidate, ck, Θ)
if {agk 6= sep} new.score += η
additem(list, new)
new ← Apply(app, candidate, ck, Θ)
if {agk 6= app} new.score += η
additem(list, new)

agenda ← Top-B(list, B)
STg

k ← Apply(agk, STg
k−1)

if {STg
k /∈ agenda} break

ApplyLoss(list, STg
k)

BackPropagation()
ModelUpdate(Θ)

be η greater than the highest-scored incorrect action after training is finished. In particular,
when the gold-standard state is pruned off the agenda, a model update is executed.

We compute loss by contrasting the gold-standard state against the negative states at the
last step. Standard back-propagation is performed. In this work, we investigate two widely-
used training objective functions, namely max-margin and max-likelihood, respectively.
Max-margin training has been extensively exploited in transition-based models (Huang &
Sagae, 2010; Zhang & Clark, 2011; Zhu, Zhang, Chen, Zhang, & Zhu, 2013; Zhang, Zhang,
Che, & Liu, 2014a), while max-likelihood training is recently used for transition-based neural
models (Zhou et al., 2015), which has been analyzed both empirically and theoretically by
Andor et al. (2016).

Here we denote the two training methods in one framework, shown by Algorithm 2,
which are different in the loss computation. For max-margin training, the loss function is
defined as:

l(STg
k,Θ) = max

STk

(
score(STk) + η ·

k∑
i=1

δ(Ai, A
g
i)
)
− score(STg

k)

= max
STk

(
score(STk)

)
− score(STg

k),

(9)

where A1 · · ·Ak is the action sequence to generate STk, Ag
1 · · ·Ag

k is the action sequence
to generate STg

k (the gold-standard state at step k), δ(·) denotes the Hamming distance
between the two input sequences and score(STk) refers to the score computed by using
Algorithm 2 with the margin η. We follow previous work exploiting subgradients to ap-
proximate the real gradients, since the above objective function is non-differentiable. The

935

Zhang, Zhang, & Fu

Algorithm 3 Gradient computation for the max-margin objective.

function ApplyLoss-MaxMargin(list, STg
k)

best ← BestItem(list)
STg

k.gradient = -1
best.gradient = 1

Algorithm 4 Gradient computation for the max-likelihood objective.

function ApplyLoss-LikeLihood(list, STg
k)

scores ← { }
for i in 1 · · · sizeof(list)

scores.append(listi.score)
p = SoftMax(scores)
for i in 1 · · · sizeof(list)

listi.gradient = pi - IsGold (listi)

gradients of the loss function with respect to the state scores can be computed by Algo-
rithm 3, where the gradient of the gold-standard state is set as -1.0 and the gradient of the
highest-score state is set as 1.0 directly.

For the max-likelihood objective, the loss function is computed as:

l(STg
k,Θ) = − log Prob(STg

k)

= − log
exp

(
score(STg

k)
)∑

STk
exp

(
score(STk)

)
= − log

exp
(
score(STg

k)
)∑

STk∈list exp
(
score(STk)

)
= log

∑
STk∈list

exp
(
score(STk)

)
− score(STg

k),

(10)

where Prob(STg
k) denotes the probability of the gold-standard state, computed by normal-

izing over all possible states. Since the number of possible states increases exponentially by
the step, we use the states in the list of Algorithm 2 to approximate the sum. The corre-
sponding gradients of the loss function to the state scores can be computed by Algorithm 4.
First we apply the softmax function to obtain the probabilities of all states in the list, then
the state gradient is calculated directly by the state probability subtracting with a one-zero
value indicating whether it is a gold-standard state (one) or not (zero). In particular, the
value of η should be zero when the max-likelihood training is exploited.

To avoid overfitting, we augment the objective with one additional L2 regularization
term, thus our final objective can be formalized as follows:

L(Θ) = l(STg
k,Θ) +

λ

2
‖ Θ ‖2 (11)

where λ is a regularization parameter. Our goal is to minimize the above loss function over
all training examples. For discrete models, the only model parameter is θ, while for neural

936

Neural Word Segmentation

network models the model parameters include W ,U ,V and b, as well as the looking-up
matrixes E. We use standard back-propagation to learn the gradients from the loss function
(LeCun, Bottou, Orr, & Müller, 2012), and online AdaGrad (Duchi, Hazan, & Singer, 2011)
to minimize the objective function for both the discrete and neural models. All the matrix
and vector parameters are initialized by uniform sampling in (−0.01, 0.01).

6. Experiments

We conduct much extended experiments based on the conference version (Zhang et al.,
2016). In addition to showing the original results on CTB6, PKU and MSR, the following
is discussed. First, we test the out-of-vocabulary (oov) performance of various models, and
also evaluate model performances on one out-of-domain dataset Zhuxian. Second, we com-
pare two different training objectives, namely max-margin and max-likelihood. Third, we
test the effectiveness of our proposed subword embeddings, and in addition perform feature
ablation analysis to evaluate several potentially useful features as well. Last, we conduct
deep analysis for discrete and neural feature combination, showing the optimal combination
hyper-parameter and explaining the performance gains from two different aspects.

6.1 Experimental Settings

Data. We use three benchmark datasets for evaluation, namely CTB6, PKU and MSR. The
CTB6 corpus is taken from the Penn Chinese Treebank 6.0, and the PKU and MSR corpora
can be obtained from BakeOff 2005 (Emerson, 2005). For Chinese word segmentation, there
are several granularity criteria to segment one sentence, and CTB6, PKU and MSR take
three styles of segmentation, each having a guideline. We follow Zhang et al. (2014a),
splitting the CTB6 corpus into training, development and testing sections. For the PKU
and MSR corpora, only the training and test datasets are specified and we randomly split
10% of the training sections for development. Additionally, we evaluate the cross-domain
performances as well, using the annotated data of Zhang, Zhang, Che, and Liu (2014b),
which takes the raw corpus of the free Internet novel “Zhuxian” as basic source, and follows
the same segmentation guideline of CTB6 (Xue, Xia, Chiou, & Palmer, 2005). Thus we use
the model trained on CTB6 to test our proposed neural model. Table 3 shows the overall
statistics of the four datasets.

The Chinese Gigaword corpus (LDC2011T13) is used to pretrain character and word
embeddings. We clean the data and remove several noisy sentences (i.e. the percentage
of Chinese characters in one sentence is below 20% and the sentence length is lower than
3 or larger than 200), and a total of 32 million sentences are kept. All datasets including
annotated and raw corpora are preprocessed by replacing all the Chinese characters into
simplified characters, and as well by replacing all full-width characters into half-width char-
acters. As a whole, we obtained vector representations for 11,327 characters, 2,130,331 full
words and 7,544,738 full/sub words (additional 7,544,738 − 2,130,331 = 5,414,407 subwords
by our new word pretraining method).

Evaluation. We use word-level precision (P), recall (R) and their F-measure (F) as the
major metrics for evaluation. Concretely, a word is treated as correct if only the predicted
span is exactly matching with the gold-standard span. In addition, in order to test the

937

Zhang, Zhang, & Fu

CTB6 Zhuxian PKU MSR

Training

#sent 23k 17k 78k
#word 641k 1,010k 2,122k

#characters 1,056k 1,663k 3,633k
average word length 1.65 1.65 1.71

Development

#sent 2.1k 0.8k 1.9k 8.7k
#word 60k 20k 100k 246k

#characters 100k 28k 164k 417k
average word length 1.67 1.39 1.64 1.69

Test

#sent 2.8k 1.4k 1.9k 4.0k
#word 82k 34k 104k 106k

#characters 134k 48k 173k 184k
average word length 1.64 1.40 1.66 1.73

Table 3: Statistics of datasets.

model performance on unknown words, we use another metric Roov, where one word is
treated as out-of-vocabulary if it has never occurred in the training corpus.

Hyper-parameters. The hyper-parameter values are tuned according to preliminary re-
sults on the development corpus. We set the dimension size of the basic input character
embeddings and word embeddings to 50. The dimension sizes of all the hidden layers of
the neural model are set to 100. Finding no significant improvement when the sizes become
larger, we use this value for simplicity and efficiency. The initial learning rate for Adagrad
is set to 0.01, the regularization term in the training objective is set to 10−8, and the value
of η in max-margin training is set to 0.2. The models are not highly sensitive to the above
hyper-parameters, with the performances remaining stable when they are set within certain
ranges. There is one hyper-parameter, the iteration number of training, that we must tune
carefully. We train different models on the corresponding training datasets for 20 iterations,
and select the best iteration model according to their development performances.

6.2 Development Results

We perform several development experiments on the CTB6 development dataset.

6.2.1 Embeddings and Beam Size

We study the influence of beam size on the baseline and neural models. Here, we can either
fine-tune or fix the embeddings during training. In case of fine-tuning, only characters and
words in the training data can be learned, while the out-of-vocabulary (OOV) embeddings
could not be used effectively. In addition, following Dyer, Ballesteros, Ling, Matthews, and
Smith (2015) we randomly set the low-frequency characters and words (i.e. characters occur
less than 2 times and words occur less than 4 times) in the training data as OOVs in order
to learn OOV character and word embeddings, while avoiding overfitting. For the CTB6
dataset, if fine-tuning is adopted, the vocabulary sizes of characters and words are 3,791 and
115,537 (prefix subwords are included), respectively. If the pretrained embeddings are not
fine-tuned, we can utilize all embeddings learned from the large raw auto-segmented corpus,

938

Neural Word Segmentation

4 8 12 16 20
88

90

92

94

96

F-
m

ea
su

re
(%

)

(a) discrete

4 8 12 16 20

(b) Ec t, Ew f

4 8 12 16 20

b16 b8 b4 b2 b1

(c) Ec f, Ew f

4 8 12 16 20

(d) Ec f, Ew t

4 8 12 16 20

(e) Ec t, Ew t

Figure 5: F-measures against the training epoch using beam sizes 1, 2, 4, 8 and 16, respec-
tively, where t and f denote tuning and not tuning (fixing) the corresponding look
up matrix.

thus the vocabularies are the same as pretrained word2vec results (character vocabulary size:
11,327, word vocabulary size: 7,544,738).

Figure 5 shows the development results, where the training curves of the discrete baseline
are shown in Figure 5(a) and these of the neural model without and with fine tuning are
shown by Figure 5(b-e), respectively. We show the development performances for every
epoch over the entire training set. All the models are trained by the max-margin objective,
as this method can give better performances. The trends of the discrete and neural models
in term of different beam sizes are highly similar. The performance increases with a larger
beam size in all settings, which demonstrates the usefulness of beam-search. When the
beam increases into 16, the gains levels out.

From the curves, we can see that fine-tuning character embeddings impacts the neural
models marginally, while fine-tuning word embeddings can bring significant changes on the
development performances. The main reason can be that the total number of Chinese
characters is relatively small, and most of them are covered by the training corpus. Thus
fine-tuning does not lead to much loss of pretrained embedding information. On the other
hand fine-tuning does not bring much gains either. However, it is a very different case for
word embeddings, for which the vocabulary size is much larger than that of the segmentation
training corpus. By using fine-tuning, we are unable to exploit the pretrained embeddings
of OOV words (98.5% of the total vocabulary size) properly. These embeddings encode
information from our baseline discrete model, which could be intuitively useful for Chinese
word segmentation.

Further, we consider another scenario where randomly initialized embeddings are ex-
ploited. In this situation, we must fine-tune the embeddings to obtain good performances.
Thus we investigate the scenario by fine-tuning both character and word embeddings. We

939

Zhang, Zhang, & Fu

4 8 12 16 20
92

92.5

93

93.5

94

94.5
F-

m
ea

su
re

(%
)

Pretained Embeddings −character
−word −character−word

Figure 6: F-measures against the training epoch by using pretrained/random embeddings.

fix the beam size to 16. Figure 6 shows the results. By removing pretrained character
embeddings, the performances show slight drops. But the performances drop more sig-
nificantly when pretrained word embeddings are replaced with random embeddings. The
results show that pretrained embeddings are useful for the neural model, which is consistent
with observations by previous work (Pei et al., 2014; Chen et al., 2015b).

Based on the above observation, we set the beam size of all the transition-based models
to 16, and exploit fine-tuned character embeddings and fixed word embeddings in our final
models. More stable and better performances can be obtained by this setting.

In particular, here we use a single model to pretrain word and subword embeddings,
projecting the two types of embeddings into a shared vector space. This is important: If
the word and subword embeddings are pretrained separately, we find that the performance
decreases significantly. Based on the final selected setting, the F-measure value drops from
95.93 to 93.54, which is reasonable as a single word-level LSTM receives inputs from two
different vector spaces. We have exploited one alternative, using two separate word-level
LSTMs for full words and subwords, respectively. The two LSTMs are computed at the
SEP actions and APP actions, resepctively. The F value of this model is 95.86, which is
not significantly different from our final model, while our model is simpler.

6.2.2 Training Objective

We investigate the influence of different training objectives on our transition-based neural
model. Figure 7 shows the results. A max-likelihood training objective leads to quick
convergence. However, the F-measure value decreases gradually after the fourth iteration,
which may be due to overfitting on the training dataset. The convergence speed by using
max-margin training is slightly slower, but after more iterations, max-margin training gives
better performances on the developmental dataset. We thus adopt max-margin training in
the transition-based neural word segmentation models.

940

Neural Word Segmentation

4 8 12 16 20
95

95.2

95.4

95.6

95.8

96

F-
m

ea
su

re
(%

)

max-margin max-likelihood

Figure 7: F-measures against the training epoch by using different training methods.

Model Description P R F 4F
neural final neural model 96.01 95.86 95.93 —

core features

-character removing character LSTM 95.72 95.60 95.66 -0.27
-subword only full word embeddings 94.87 94.91 94.89 -1.04

-word removing word LSTM 90.80 90.90 90.85 -5.08
-LSTM(+CONV) convolution, character/word window: 5/2 95.28 95.52 95.40 -0.53

redundant (less informative) features

+character bigram embedding 95.96 95.78 95.87 -0.06
+character category embedding 96.09 95.74 95.91 -0.02

+word length embedding 95.92 95.92 95.92 -0.01
+first character fetching from character LSTM 95.88 95.92 95.90 -0.03

+all included characters average pooling over character LSTM 95.98 95.92 95.95 +0.02
+action another LSTM (Zhang et al., 2016) 96.01 95.79 95.90 -0.03

Table 4: Feature ablation experiments.

6.2.3 Feature Ablation

We conduct feature ablation experiments to study the effects of the word and character
embedding features to the neural model. The results are shown in Table 4. Character
embeddings (-char) contribute only 0.27% to the neural segmentation model, similar to
our finding in Zhang et al. (2016). The role of character embeddings is not as important
as demonstrated by previous character-based neural models (Pei et al., 2014; Chen et al.,
2015b). One possible reason can be that the global word-level information alone is suffi-
cient for action prediction in most contexts. The observation indicates that we can obtain
competitive performances in the transition-based model as well by using pure word-level
features. One potential benefit is that the efficiency of our model, which can save the
time cost by the character LSTM. The developmental speed is increased from 40.0 to 57.7
sentences per second after character LSTM is removed.

-subword denotes the exploration of pretrained word embeddings based only on full
words, which is the same as our original conference paper (Zhang et al., 2016). Without
embeddings of subwords, the performance drops significantly, by close to 1%. By removing

941

Zhang, Zhang, & Fu

both full and sub word embeddings (-word), our transition-based neural model gives an
F-measure of only 90.85%, nearly 5% below of the final development performance, demon-
strating the importance of word-level features. Intuitively, we can explain the effectiveness
of the word-level LSTM by the example in Figure 2(b). As shown in step 4, the last
word “外企(foreign company)” is a highly important clue for predicting the next word “业
务(business)”.

-LSTM(+CONV) is used to verify the effectiveness of LSTM. The major benefit of LSTM
is that it can capture long distance connections inner an input sequence. Here we replace
all LSTM neural structures by convolutional structures. We adopt a window size of 5
(cq0−2 · · · cq0+2) for encoding character sequences, and a window size of 2 (ws0 and ws1) for
encoding word sequence, which includes similar local information as the discrete baseline.
According to Table 4, removing LSTM reduces the final performances by 0.53%, indicating
the usefulness of LSTM structures. In particular, we find that the transition-based neural
model by convolutional neural structures performs worse than the baseline discrete model
(convolution: 95.40 v.s. discrete: 95.72). Considering that both models exploit similar
local features, the observation further verifies the importance of long distance features for
Chinese word segmentation.

In addition, we also test the effects of other potential informative features, including:
(1) character-level information such as character bigram embeddings, character category
embeddings, which are exploited by concatenated with character embeddings for character-
level LSTM; (2) word-level features from the last word such as length embedding, vector
representation of the first character derived from the character LSTM, and vector repre-
sentation of all included characters by averaging over their character LSTM outputs, which
are exploited by concatenation with word embeddings; and (3) action-level LSTM features,
which have been used in our original conference paper (Zhang et al., 2016) but shown
ineffective by Yang et al. (2017). The ineffectiveness of the action-level LSTM has been
observed in Kuncoro, Ballesteros, Kong, Dyer, Neubig, and Smith (2017) also, who perform
joint syntax parsing and language modeling.

We find that these features do not significantly influence our transition-based neural
model. The obversion is slightly different from the conference version (Zhang et al., 2016),
for example, the embeddings of character bigrams and the action-level LSTM features (i.e.,
the two kinds of features lead to increases of 0.22% and 0.28% on the same data in the
conference version, respectively). For the former, one possible reason may be that the en-
hanced word-level embeddings now cover subwords as well, which makes character bigrams
less informative, since they have overlapping information. For the latter, the possible reason
can include: (1) the actions are simple, (2) there is no apparent distance dependency among
the action sequence and (3) existing word LSTM features already cover action sequence in-
formation. According to the results, we conclude that the proposed neural model is able to
achieve state-of-the-art performances based on a highly concise neural network structure.

6.2.4 Discrete and Neural Features

Prior work has shown the effectiveness of integrating discrete and neural features for several
NLP tasks (Turian, Ratinov, & Bengio, 2010; Wang & Manning, 2013; Durrett & Klein,
2015; Zhang & Zhang, 2015). We investigate the usefulness of such integration to our word-

942

Neural Word Segmentation

0.8 0.84 0.88 0.92 0.96 1
0.8

0.84

0.88

0.92

0.96

1

discrete

ne
ur

al

(a) Compared against the gold segmentations.

0.8 0.84 0.88 0.92 0.96 1
0.8

0.84

0.88

0.92

0.96

1

discrete

ne
ur

al

(b) Compared against the predicted segmenta-
tions of the combined model

Figure 8: Sentence-level F-measure comparisons for the discrete and neural models.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
95.6

95.8

96

96.2

96.4

96.6
96.45

95.72

95.93

F-
m

ea
su

re
s(

%
)

Figure 9: Integration performances with respect to the scale hyper-parameter α.

based segmentor on the development dataset. In particular, we conduct two experiments.
First, we compare the error distributions between the discrete and the neural models. Intu-
itively, different error distributions are necessary for improvements by integration. We draw
a scatter graph to show their differences, with the (x, y) values denoting the F scores of the
two models with respect to sentences, respectively. As shown in Figure 8(a), the points are
rather scattered, showing the differences of the two models. In other words, the discrete
model and the neural model are expertise under different contexts, being complementary
with each other. Thus a combination may result in better performances.

Second, we directly examine the results by integrating discrete and neural features.
As shown in Equation 7, we have a hyper-parameter α to scale the scores of the two
separate feature sets. Figure 9 shows the performances. When α = 0 or α = 1, the single
model performances are reported. We can see that the integration model achieves the best
performance when α = 0.1, and the concrete value is 96.45, showing an increase of 0.52%
over the neural model, which is the better one of the two individual models.

943

Zhang, Zhang, & Fu

Models P R F Roov

our transition-based word models

discrete 95.35 95.20 95.28 73.95
neural 95.77 95.47 95.62 76.58
combined 96.02 96.06 96.04 80.18

character-based CRF models

discrete 95.14 95.20 95.17 70.68
neural 95.47 95.45 95.46 74.16
combined 95.69 95.80 95.74 76.95

other models

(Liu et al., 2016) N/A N/A 95.48 N/A
(Zhang et al., 2014a) N/A N/A 95.71 N/A
(Wang et al., 2011) 95.83 95.75 95.79 N/A
(Zhang & Clark, 2011) 95.46 94.78 95.13 71.18

Table 5: Main results on CTB6 test dataset.

In order to study the similarities between the combined model and the individual models,
we draw a scatter graph of the two models in Figure 8(a) using the combined segmentation
outputs as the gold-standard reference. Intuitively, the F scores can be regarded as similar-
ities between two different outputs. As shown in Figure 8(b), it is difficult to see any bias
of the combined model favored the discrete or neural models, since the points in the figure
are also highly scattered.

6.3 Final Results

Table 5 shows the final results on the CTB6 test dataset. The transition-based models using
neural features achieve better performances than those using discrete features. The obser-
vation is different from our conference paper (Zhang et al., 2016), thanks to the enhanced
pretrained word embeddings by the neural model. The combined model with both discrete
and neural features gives the best performances, which is consistent with our developmental
findings and our conference paper. We report the models’ performance in recognizing OOV
words as well. The results show that the neural models can give better OOV performances,
which possibly benefits from the pretrained word embeddings.

For a more thorough comparison, we implement discrete, neural and combined character-
based Chinese word segmentation models as well.3 In particular, the character-based dis-
crete model is a CRF tagging model using character unigrams, bigrams, trigrams and
tag transitions (Tseng et al., 2005), and the character-based neural model exploits a bi-
directional LSTM layer to model character sequences and a CRF layer for output (Chen
et al., 2015b).4 The bi-directional character LSTM is different from our transition-based
neural model in that character bigram embeddings are also exploited as inputs to LSTMs,

3. Publicly available under Apache License 2.0 at https://github.com/zhangmeishan/NNCRFSegmentor.
4. Bi-directional LSTM is slightly better than a single left-right LSTM used in Chen et al. (2015b).

944

Neural Word Segmentation

Models
PKU MSR

F Roov F Roov

our transition-based word models

discrete 95.14 62.18 97.17 65.26
neural 95.62 67.20 97.03 71.14
combined 95.93 69.87 97.87 74.13

character-based CRF models

discrete 95.00 58.24 96.83 56.72
neural 95.34 61.38 97.30 72.11
combined 95.68 68.36 97.44 73.27

other models

(Liu et al., 2016) 95.67 — 97.58 —
(Cai & Zhao, 2016) 95.5 — 96.5 —
(Ma & Hinrichs, 2015) 95.1 — 96.6 —
(Pei et al., 2014) 95.2 — 97.2 —
(Zhang et al., 2013) 96.1 — 97.5 —
(Sun, Wang, & Li, 2012) 95.4 — 97.4 —
(Zhang & Clark, 2011) 95.12 60.58 97.25 67.38
(Sun, 2010) 95.2 — 96.9 —
(Sun et al., 2009) 95.2 — 97.3 —

Table 6: Main results on PKU and MSR test datasets.

because our experiments show that character bigram embeddings are highly useful for
character-based neural models, without which the performances can drop significantly. The
combined model uses the same method as the model integration of discrete and neural
features for our transition-based model.

The transition-based word models achieve better performances than the character-based
CRF models, since the models can exploit additional word information learnt from large
auto-segmented corpus. We also compare the results with other methods in the literature.
In particular, character-based CRF models perform poorly on OOV words compared with
their word-based counterparts, which could be a problem for out-of-domain testdata. (Wang
et al., 2011) is a semi-supervised model that exploits word statistics from auto-segmented
raw corpus, which is similar with our combined model in using semi-supervised word infor-
mation. (Zhang et al., 2014a) is a joint segmentation, POS-tagging and dependency parsing
model, which can exploit syntactic information. We achieve slightly better performances
compared with these methods.

Finally, we report performances on the PKU and MSR datasets also. As shown in
Table 6, our combined model gives the best result on the MSR dataset, and the second
best on PKU. The method of (Zhang et al., 2013) gives the best performance on PKU
by co-training on large-scale data. The results of (Chen et al., 2015a) and (Chen et al.,
2015b) are not listed, because they take a preprocessing step by replacing Chinese idioms
with a uniform symbol in their test data, which can greatly influence the fairness of model
comparisons. We only list the OOV performances of the models implemented by us, since

945

Zhang, Zhang, & Fu

Models P R F Roov

our transition-based word models

discrete 88.30 86.56 87.42 65.06
neural 86.33 87.09 86.71 67.05
combined 87.82 90.23 89.01 75.26

character-based CRF models

discrete 87.80 86.73 87.26 65.21
neural 86.58 86.44 86.51 66.49
combined 88.54 88.28 88.41 73.94

other models

(Zhang & Clark, 2011) 88.42 87.13 87.77 66.88

Table 7: Main results on Zhuxian test dataset.

we find that different work usually have different preprocessing techniques, which causes
the OOV performances incomparable.

Cross domain. We evaluate the model performances on an out-of-domain dataset in
order to test the robustness of the transition-based neural models For these tests, we train
models on the CTB6 training and development datasets, reporting their performances on
the Zhuxian test dataset, whose segmentation style is the same as CTB6. Table 7 shows
the detailed results. For the transition-based models, neural features can result in better
performances on OOV words. For example, the domain words such as “烧烧烧火火火棍”(fire stick)
and “小小小池池池镇”(Xiao Chi Town) can be correctly recognized by the transition-based neural
model with more cases than other models. These words are extremely difficult because they
have subwords (the bold part) which could be full words as well. In the transition-based
neural model, subword embeddings can be helpful for recognition of these words. Again,
the integrated transition-based model gives the best performance on the dataset.

6.4 Comparing Word-Based and Character-Based Neural Models

To study the differences between word-based and character-based neural models, we conduct
error analysis on the test dataset of CTB6. First, we examine the error distribution on
individual sentences. Figure 10 shows the F-measure values of each test sentence by word-
and character-based neural models, respectively, where the x-axis value denotes the F-
measure value of the word-based neural model, and the y-axis value denotes its performance
of the character-based neural model. We can see that the majority scatter points are off
the diagonal, demonstrating strong differences between the two models. This results from
the differences in feature sources.

Second, we study the F-measure distribution of the two neural models with respect to
the sentence length by the number of words. We divide the test sentences into eleven bins,
with bin i denoting sentence lengths in [5∗(i−1), 5∗i]. The number of sentences in each bin
ranges from 120 to 380. Figure 11 shows the results. According to the figure, we observe
that the word-based neural model is relatively weaker for sentences with length in [1, 10],
while better tackling long sentences.

946

Neural Word Segmentation

0.8 0.84 0.88 0.92 0.96 1
0.8

0.84

0.88

0.92

0.96

1

word

ch
ar

ac
te

r

Figure 10: Sentence-level F-measure comparisons for word- and character-based neural
models.

[1-5] [6-10] [11-15] [16-20] [21-25] [26-30] [31-35] [36-40] [41-45] [46-50] 50+
95

95.4

95.8

96.2

96.6

97

F-
m

ea
su

re
s(

%
)

word character

Figure 11: F-measure against sentence length.

Third, we compare the two neural models by their capabilities of modeling words with
different lengths. Figure 12 shows the results. The performances are lower for words with
lengths beyond 2, and the performance drops significantly for words with lengths over 3.
Overall, the word-based neural model achieves comparable performances with the character-
based model, but gives significantly better performances for long words, in particular when
the word length is over 3. This demonstrates the advantage of word-level features.

7. Related Work

Xue (2003) was the first to propose a character-tagging method to Chinese word segmenta-
tion, using a maximum entropy model to assign B/I/E/S tags to each character in the input
sentence separately. Peng et al. (2004) showed that better results can be achieved by global
learning using a CRF model. This method has been followed by most subsequent models

947

Zhang, Zhang, & Fu

1 2 3 4+
75

80

85

90

95

F-
m

ea
su

re
s(

%
)

word-based character-based

Figure 12: F-measure against word length, where the boxes with red dots denote the per-
formances of word-based neural model, and the boxes with blue slanted lines
denote character-based neural model.

in the literature (Tseng et al., 2005; Zhao, 2009; Sun et al., 2012). The most effective fea-
tures have been character unigrams, bigrams and trigrams within a five-character window,
and a bigram tag window. Special characters such as alphabets, numbers and date/time
characters are also differentiated for extracting features.

Zheng et al. (2013) built a neural network segmentor, which essentially substitutes
the manual discrete features of Peng et al. (2004), with dense real-valued features induced
automatically from character embeddings, using a deep neural network structure (Collobert,
Weston, Bottou, Karlen, Kavukcuoglu, & Kuksa, 2011). A tag transition matrix is used for
inference, which makes the model effective. Most subsequent work on neural segmentation
followed this method, improving the extraction of emission features by using more complex
neural network structures.

Mansur, Pei, and Chang (2013) experimented with embeddings of richer features, and in
particular character bigrams. Pei et al. (2014) used a tensor neural network to achieve ex-
tensive feature combinations, capturing the interaction between characters and tags. Chen
et al. (2015a) used a recursive network structure to the same end, extracting more com-
bined features to model complicated character combinations in a five-character window.
Chen et al. (2015b) used a LSTM model to capture long-range dependencies between char-
acters in a sentence. Xu and Sun (2016) proposed a dependency-based gated recursive
neural network to efficiently integrate local and long-distance features. The above methods
are all character-based models, making no use of full word information. In contrast, we
leverage both character embeddings and word embeddings for better accuracies.

For word-based segmentation, Andrew (2006) used a semi-CRF model to integrate word
features, Zhang and Clark (2007) used a perceptron algorithm with inexact search, and Sun
et al. (2009) used a discriminative latent variable model to make use of word features. Re-
cently, there have been several word-based neural models (Liu et al., 2016; Cai & Zhao,
2016), among which our conference version (Zhang et al., 2016) can be regarded as one rep-
resentative model. Morita, Kawahara, and Kurohashi (2015) suggested a two-stage method,

948

Neural Word Segmentation

using a word-level RNN language model to rerank the outputs from a baseline model, thus
it is not a word-based segmentation model alone, but a seminal example using word-level
neural features. Liu et al. (2016) follow Andrew (2006) using a semi-CRF for structured
inference. Cai and Zhao (2016) exploit a different decoding methd to produce word se-
quence incrementally. Compared with these work, the transition-based framework can be
more intuitive for utilizing word-level features in a left-to-right incremental processing.

We followed the global learning and beam-search framework of Zhang and Clark (2011)
in building a word-based neural segmentor. The main difference between our model and that
of Zhang and Clark (2011) is that we use a neural network to induce feature combinations
directly from character and word embeddings. In addition, the use of a bi-directional
LSTM allows us to leverage non-local information from the word sequence, and look-ahead
information from the incoming character sequence. The automatic neural features are
complementary to the manual discrete features of Zhang and Clark (2011). We show that
our model can accommodate the integration of both types of features. This is similar in
spirit to the work of Sun (2010) and Wang, Voigt, and Manning (2014), who integrated
features of character-based and word-based segmentors.

Transition-based methods with beam search have been exploited for a range of other
NLP tasks, including syntactic parsing (Zhang & Nivre, 2011; Zhu et al., 2013), information
extraction (Li & Ji, 2014) and various joint models (Zhang, Zhang, Che, & Liu, 2013; Zhang
et al., 2014a). Recently, the effectiveness of neural features has been studied for this frame-
work, achieving success for parsing and other tasks. Representative work includes Zhou
et al. (2015), Weiss, Alberti, Collins, and Petrov (2015), Watanabe and Sumita (2015) and
Andor et al. (2016). In this work, we apply the transition-based neural framework to Chi-
nese segmentation, in order to exploit word-level neural features such as word embeddings.

8. Conclusion

We proposed a word-based neural model for Chinese segmentation, which exploits not only
character embeddings, but also word embeddings pre-trained from large scale corpus. A
transition-based framework is used to build the neural segmentation model, where decoding
is performed incrementally by predicting a sequence of transition actions. We exploited
LSTM neural structures to represent both the input character sequence and the partial
word sequence. The resulting hidden features are used for representations of states, based
on which transition actions are predicted by a feed-forward neural layer.

We conducted experiments on several benchmark datasets, which cover segmentation
styles of different granularities and domains. Results demonstrated that our proposed model
achieved strong performances compared with a discrete word-based baseline and the state-
of-the-art character-based neural models in the literature. This shows the usefulness of
word level features in the form of word and subword embeddings for neural word segmenta-
tion. We further demonstrated that the transition-based framework can also utilize discrete
features, resulting in a combined model that achieved top performances compared with pre-
vious work. Finally, we conducted extended comparisons to study the differences between
word-based and character-based neural models, showing their unique characteristics.

949

Zhang, Zhang, & Fu

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) grants
61672211 and 61602160, Natural Science Foundation of Heilongjiang Province (China) grant
F2016036, Special business expenses in Heilongjiang Province (China) grant 2016-KYYWF-
0183. Corresponding author: Yue Zhang, E-mail: frcchang@gmail.com.

References

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., & Collins,
M. (2016). Globally normalized transition-based neural networks. In Proceedings of
the 54th ACL, pp. 2442–2452, Berlin, Germany.

Andrew, G. (2006). A hybrid markov/semi-markov conditional random field for sequence
segmentation. In Proceedings of EMNLP, pp. 465–472, Sydney, Australia.

Cai, D., & Zhao, H. (2016). Neural word segmentation learning for chinese. In Proceedings
of ACL 2016.

Chen, X., Qiu, X., Zhu, C., & Huang, X. (2015a). Gated recursive neural network for chinese
word segmentation. In Proceedings of the 53nd ACL, pp. 1744–1753.

Chen, X., Qiu, X., Zhu, C., Liu, P., & Huang, X. (2015b). Long short-term memory neural
networks for chinese word segmentation. In Proceedings of EMNLP, pp. 1197–1206.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of EMNLP, pp. 1–8.

Collins, M., & Roark, B. (2004). Incremental parsing with the perceptron algorithm. In
Proceedings of the 42nd ACL, pp. 111–118, Barcelona, Spain.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011).
Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12, 2493–2537.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12, 2121–
2159.

Durrett, G., & Klein, D. (2015). Neural crf parsing. In Proceedings of the 53nd ACL, pp.
302–312.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-based
dependency parsing with stack long short-term memory. In Proceedings of the 53nd
ACL, pp. 334–343.

Emerson, T. (2005). The second international chinese word segmentation bakeoff. In Pro-
ceedings of the Second SIGHAN Workshop on Chinese Language Processing, pp. 123–
133.

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with
lstm recurrent networks. Journal of machine learning research, 3 (Aug), 115–143.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9 (8), 1735–1780.

950

Neural Word Segmentation

Huang, L., & Sagae, K. (2010). Dynamic programming for linear-time incremental parsing.
In Proceedings of the 48th ACL, pp. 1077–1086.

Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., Neubig, G., & Smith, N. A. (2017). What
do recurrent neural network grammars learn about syntax?. In Proceedings of EACL,
pp. 1249–1258.

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K.-R. (2012). Efficient backprop. In Neural
networks: Tricks of the trade, pp. 9–48. Springer.

Levy, O., & Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings of
the 52nd ACL, pp. 302–308.

Li, Q., & Ji, H. (2014). Incremental joint extraction of entity mentions and relations. In
Proceedings of the ACL 2014.

Liu, Y., Che, W., Guo, J., Qin, B., & Liu, T. (2016). Exploring segment representations
for neural segmentation models. In Proceedings of IJCAI 2016.

Ma, J., & Hinrichs, E. (2015). Accurate linear-time chinese word segmentation via embed-
ding matching. In Proceedings of the 53nd ACL, pp. 1733–1743.

Mansur, M., Pei, W., & Chang, B. (2013). Feature-based neural language model and chinese
word segmentation. In Proceedings of IJCNLP, pp. 1271–1277.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed repre-
sentations of words and phrases and their compositionality. In NIPS, pp. 3111–3119.

Morita, H., Kawahara, D., & Kurohashi, S. (2015). Morphological analysis for unsegmented
languages using recurrent neural network language model. In Proceedings of the 2015
Conference on EMNLP, pp. 2292–2297.

Pei, W., Ge, T., & Chang, B. (2014). Max-margin tensor neural network for chinese word
segmentation. In Proceedings of the 52nd ACL, pp. 293–303, Baltimore, Maryland.

Peng, F., Feng, F., & McCallum, A. (2004). Chinese segmentation and new word detection
using conditional random fields. In Proceedings of Coling 2004, pp. 562–568, Geneva,
Switzerland.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 EMNLP, pp. 1532–1543.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer,
L. (2018). Deep contextualized word representations. In Proceedings of the 2018
Conference of the NAACL, pp. 2227–2237.

Shi, Y., & Wang, M. (2007). A dual-layer crfs based joint decoding method for cascaded
segmentation and labeling tasks.. In IJCAI, pp. 1707–1712.

Sun, W. (2010). Word-based and character-based word segmentation models: Comparison
and combination. In Coling 2010: Posters, pp. 1211–1219.

Sun, W., & Xu, J. (2011). Enhancing chinese word segmentation using unlabeled data. In
Proceedings of the 2011 Conference on EMNLP, pp. 970–979.

951

Zhang, Zhang, & Fu

Sun, X., Wang, H., & Li, W. (2012). Fast online training with frequency-adaptive learning
rates for chinese word segmentation and new word detection. In Proceedings of the
50th ACL, pp. 253–262.

Sun, X., Zhang, Y., Matsuzaki, T., Tsuruoka, Y., & Tsujii, J. (2009). A discriminative latent
variable chinese segmenter with hybrid word/character information. In Proceedings of
NAACL 2009, pp. 56–64.

Tseng, H., Chang, P., Andrew, G., Jurafsky, D., & Manning, C. (2005). A conditional
random field word segmenter for sighan bakeoff 2005. In Proceedings of the fourth
SIGHAN workshop, pp. 168–171.

Turian, J., Ratinov, L.-A., & Bengio, Y. (2010). Word representations: A simple and general
method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pp. 384–394.

Wang, M., & Manning, C. D. (2013). Effect of non-linear deep architecture in sequence label-
ing. In Proceedings of the Sixth International Joint Conference on Natural Language
Processing, pp. 1285–1291, Nagoya, Japan. Asian Federation of Natural Language
Processing.

Wang, M., Voigt, R., & Manning, C. D. (2014). Two knives cut better than one: Chinese
word segmentation with dual decomposition. In Proceedings of the 52nd ACL, pp.
193–198, Baltimore, Maryland.

Wang, Y., Kazama, J., Tsuruoka, Y., Chen, W., Zhang, Y., & Torisawa, K. (2011). Improv-
ing chinese word segmentation and pos tagging with semi-supervised methods using
large auto-analyzed data. In Proceedings of 5th IJCNLP, pp. 309–317, Chiang Mai,
Thailand.

Watanabe, T., & Sumita, E. (2015). Transition-based neural constituent parsing. In Pro-
ceedings of the 53rd ACL, pp. 1169–1179.

Weiss, D., Alberti, C., Collins, M., & Petrov, S. (2015). Structured training for neural
network transition-based parsing. In Proceedings of the 53rd ACL, pp. 323–333.

Xu, J., & Sun, X. (2016). Dependency-based gated recursive neural network for chinese
word segmentation. In Proceedings of ACL 2016.

Xue, N. (2003). Chinese word segmentation as character tagging. International Journal of
Computational Linguistics and Chinese Language Processing, 8(1).

Xue, N., Xia, F., Chiou, F.-D., & Palmer, M. (2005). The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Language Engineering, 11(2), 207–238.

Yang, J., Zhang, Y., & Dong, F. (2017). Neural word segmentation with rich pretraining.
In Proceedings of the 55th ACL, pp. 839–849.

Zhang, L., Wang, H., Sun, X., & Mansur, M. (2013). Exploring representations from un-
labeled data with co-training for Chinese word segmentation. In Proceedings of the
EMNLP 2013, pp. 311–321, Seattle, Washington, USA.

Zhang, M., & Zhang, Y. (2015). Combining discrete and continuous features for determin-
istic transition-based dependency parsing. In Proceedings of the 2015 EMNLP, pp.
1316–1321.

952

Neural Word Segmentation

Zhang, M., Zhang, Y., Che, W., & Liu, T. (2013). Chinese parsing exploiting characters.
In Proceedings of the 51st ACL, pp. 125–134.

Zhang, M., Zhang, Y., Che, W., & Liu, T. (2014a). Character-level chinese dependency
parsing. In Proceedings of the 52nd ACL, pp. 1326–1336, Baltimore, Maryland.

Zhang, M., Zhang, Y., Che, W., & Liu, T. (2014b). Type-supervised domain adaptation for
joint segmentation and pos-tagging. In Proceedings of the 14th EACL, pp. 588–597,
Gothenburg, Sweden. Association for Computational Linguistics.

Zhang, M., Zhang, Y., & Fu, G. (2016). Transition-based neural word segmentation. In
Proceedings of the 54th ACL, pp. 421–431.

Zhang, Y., & Clark, S. (2007). Chinese segmentation with a word-based perceptron algo-
rithm. In Proceedings of the 45th ACL, pp. 840–847, Prague, Czech Republic.

Zhang, Y., & Clark, S. (2011). Syntactic processing using the generalized perceptron and
beam search. Computational Linguistics, 37 (1), 105–151.

Zhang, Y., & Nivre, J. (2011). Transition-based dependency parsing with rich non-local
features. In Proceedings of the 49th ACL, pp. 188–193.

Zhao, H. (2009). Character-level dependencies in chinese: Usefulness and learning. In
Proceedings of the EACL, pp. 879–887, Athens, Greece.

Zhao, H., Huang, C.-N., Li, M., & Lu, B.-L. (2006). Effective tag set selection in chinese
word segmentation via conditional random field modeling. In Proceedings of PACLIC,
Vol. 20, pp. 87–94. Citeseer.

Zheng, X., Chen, H., & Xu, T. (2013). Deep learning for Chinese word segmentation and
POS tagging. In Proceedings of the 2013 Conference on EMNLP, pp. 647–657, Seattle,
Washington, USA.

Zhou, H., Zhang, Y., Cheng, C., Huang, S., Dai, X., & Chen, J. (2017). A neural proba-
bilistic structured-prediction method for transition-based natural language processing.
Journal of Artificial Intelligence Research, 58, 703–729.

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A neural probabilistic structured-
prediction model for transition-based dependency parsing. In Proceedings of the 53rd
ACL, pp. 1213–1222.

Zhu, M., Zhang, Y., Chen, W., Zhang, M., & Zhu, J. (2013). Fast and accurate shift-reduce
constituent parsing. In Proceedings of the 51st ACL, pp. 434–443.

953

