
1

A Simple and Effective Neural Model for Joint
Word Segmentation and POS Tagging

Meishan Zhang, Nan Yu, and Guohong Fu

Abstract—Joint models have shown stronger capabilities for
Chinese word segmentation and POS tagging, and have received
great interests in the community of Chinese natural language
processing (NLP). In this paper, we follow this line of work,
presenting a simple yet effective sequence-to-sequence neural
model for the joint task, based on a well-defined transition system,
by using long short term memory (LSTM) neural network
structures. We conduct experiments on five different datasets.
The results demonstrate that our proposed model is highly
competitive. By using well-trained character-level embeddings,
the proposed neural joint model is able to obtain the best-
reported performances in the literature.

Index Terms—Chinese word segmentation, POS tagging, joint
model, neural networks, transition system.

I. INTRODUCTION

Word segmentation and POS tagging have been two funda-
mental tasks for Chinese natural language processing (NLP)
[1], [2]. As Chinese sentences do not have explicit boundaries
among words, word segmentation has been a prerequisite
step, and then POS tagging is performed based on segmented
sentences in aligning with the models of other languages
such as English. State-of-the-art approaches treat both tasks
as structural learning problems, using either sequence labeling
models or transition-based incremental models [3]–[8]. The
former are able to exploit dynamic decoding, while the later
are flexible of feature engineering.

As word segmentation and POS tagging are highly cor-
relative tasks, joint models which perform both tasks in a
single model have achieved better performances, due to their
capabilities of reducing error propagation and making use of
mutual interaction between the two tasks [9]–[12]. Among the
work of joint word segmentation and POS tagging, Zhang et
al. (2010) [13] is one of the representative methods because of
its simplicity and high efficiency. It exploits a transition-based
framework, being able to use both character and word-level
features. By decoding incrementally to predict a sequence of
transition actions, the model behaves quite similarly to the
sequence-to-sequence (Seq2Seq) neural models.

Recently, neural network models have received great atten-
tions in the NLP community [14]. On the one hand, neural
models greatly simplify the learning and decoding process

This work is supported by the National Natural Science Foundation of
China (No. 61602160 and No. 61672211), Natural Science Foundation of
Heilongjiang Province (China) grant F2016036, and Special business expenses
in Heilongjiang Province (China) grant 2016-KYYWF-0183 (Corresponding
author: Guohong Fu.)

M. Zhang, N. Yu and G. Fu are with the School of Computer Science
and Technology, Heilongjiang University, Harbin 150080, China (e-mail:
mason.zms@gmail.com; yunan.hlju@gmail.com; ghfu@hlju.edu.cn).

of a number of NLP tasks [15]–[17], by neural embeddings
[18] and powerful neural network structures such as long short
term memory (LSTM) [19]. On the other hand, we can better
neural model performances by pretraining techniques which
aim to distill knowledge from other closely-related tasks [14].
For example, we can use pretrained word embeddings by a
neural language model from a large-scale raw corpus. For both
Chinese word segmentation and POS tagging, a number of
neural models have been suggested, and have achieved better
performances than traditional statistical models [20]–[23].

Although neural network models for separate word segmen-
tation and POS tagging have been intensively investigated,
only few work has been aware of neural joint model of the two
tasks. There are several exceptions [24]–[27]. Only Kurita et
al. (2017) [26] and Shao et al. (2017) [27] have achieved better
performances than traditional statistical models on a widely-
adopted standard CTB5 dataset . The former requires heavy
feature engineering, designing more than 40 atomic features to
construct their neural network structure, and the later exploits
a CRF-based sequence labeling framework, resulting much
lower performances than the former one.

In this work, we propose a simple yet effective Seq2Seq
model for joint word segmentation and POS tagging. Our work
is mainly inspired by the transition system of Zhang et al.
(2010) [13], transforming the joint decoding process into a
sequence of action predictions. Thus we are able to directly
apply the Seq2Seq style of neural learning for the joint task.
We exploit character-level embeddings including unigrams and
bigrams as basic inputs, following the work of Chen et al.
(2015) [28], which has demonstrated the effectiveness of both
embeddings. In addition, we pretrain the input embeddings in
two different ways, by using a large-scale raw corpus and an
auto-tagged corpus, respectively. The pretrained embeddings
on auto-tagged corpus are firstly proposed by Zhou et al.
(2017) [29] for word segmentation. We make an extension
to adapt the method for the joint task.

We conduct experiments on five datasets, including CTB5,
CTB6, CTB7, PKU and NCC. Our neural joint model with
external pretrained embeddings consistently performs better
than the same transition-based model using traditional dis-
crete features. Even without the external embeddings, our
joint model can achieve comparable performances under this
purely-supervised setting. We also compare the proposed joint
model with the corresponding pipeline neural models, finding
that the joint model always brings higher performances. By
using the input character embeddings pretrained on large-scale
auto-tagged corpus, our model is able to achieve the best-
reported performances on the five datasets in the literature.



2

Step Action State
stack(· · ·w−2|t−2 w−1|t−1) queue(c0c1 · · · )

0 - φ ao yun · · ·
1 SEP(NR) 奥(ao)|NR 运(yun) 会(hui) · · ·
2 APP 奥运(ao yun)|NR 会(hui) 正(zheng) · · ·
3 APP 奥运会(ao yun hui)|NR 正(zheng) 式(shi) · · ·
4 SEP(AD) 奥运会(ao yun hui)|NR 正(zheng)|AD 式(shi) 开(kai) 幕(mu)
5 APP 奥奥奥运运运会会会(ao yun hui)|NR 正正正式式式(zheng shi)|AD 开开开(kai) 幕幕幕(mu)
6 SEP(VV) 奥运会(ao yun hui)|NR 正式(zheng shi)|AD 开(kai)|VV 幕(mu)
7 APP 奥运会(ao yun hui)|NR 正式(zheng shi)|AD 开幕(kai mu)|VV φ

Table I
AN EXAMPLE OF THE TRANSITION SYSTEM FOR JOINT WORD SEGMENTATION AND POS TAGGING (“奥运会(AO YUN HUI, THE OLYMPIC GAMES)|NR正
式(ZHENG SHI, OFFICIALLY)|AD开幕(KAI MU, OPEN)|VV”). THE BOLD LINE CORRESPONDS TO THE EXAMPLE IN FIGURE 1, WHICH WILL BE FURTHER

ILLUSTRATED.

We make our code publicly available under Apache License
at https://github.com/zhangmeishan/NNTranJSTagger.

II. THE PROPOSED MODEL

In this section, we describe the neural Seq2Seq model for
joint Chinese word segmentation and POS tagging. First, we
introduce the transition system of Zhang et al. (2010), which
is used to linearize the joint decoding procedure. Then, we
describe the neural structures of our Seq2Seq joint model in
detail, which includes two core parts: the encoder and decoder,
respectively. And finally, we present the training details of the
proposed model.

A. The Transition System

The transition-based framework has been widely used in
structural learning problems [21], [30], especially in a joint
modeling setting [26], [31], [32], since it is concise and
yet effective. It performs the decoding process step by step
incrementally, based on a predefined transition system. Con-
cretely, a transition system has two key components: (1)
transition states and (2) a set of transition actions. A transition
state defines representation of a partial result, while transition
actions are used to control how a transition state advance by
one step. Initially, we have an empty starting state, and then the
state advances gradually by a sequence of transition actions,
until it reaches an end state representing a full result.

By using a well-designed transition system of joint word
segmentation and POS tagging, we are able to linearize the
decoding process naturally into predicting a sequence of
transition actions. Thus we can then directly apply a neural
Seq2Seq model for the joint task. In addition, we are capable
of using both character-level and word-level features during
the decoding phase, by taking the accompanying transition
states into account.

We follow Zhang et al. (2010) [13] to define our transition
system, which has achieved state-of-the-art performances for
joint word segmentation and POS tagging with traditional
discrete features. The transition state consists of a stack and
a queue, where the stack preserves the partially-analyzed
segmentation and POS tagging results, and the queue holds the
unprocessed Chinese characters. The transition system defines
two kinds of actions:

• SEP(t): move the first character of the queue onto the
stack as a new (sub)word with POS tag t.

• APP: move the first character of the queue onto the stack,
appending it to the top-stack (sub)word.

We provide an example to illustrate the transition
system, as shown in Table I. Given an input sen-
tence “奥(ao)运(yun)会(hui)正(zheng)式(shi)开(kai)幕(mu)”
(The Olympic Games officially open), we can obtain the
final result “奥运会(ao yun hui, the Olympic Games)|NR
正式(zheng shi, officially)|AD 开幕(kai mu, open)|VV” by
a sequence of actions “SEP(NR) APP APP SEP(AD) APP
SEP(VV) APP”, according to the transition system.

B. Seq2Seq Modeling

Neural Seq2Seq learning has received increasing interests
in the NLP community. On the one hand, it can give state-
of-the-art performances for a number of NLP tasks, including
machine translation [33], dialogue [16] and question answering
[17]. And on the other hand, it is simple and easy to extend. All
required for a task is to convert it into predicting a sequence
of symbols. Here we convert the joint word segmentation
and POS tagging into a sequence of actions based on the
aforementioned transition system.

A Seq2Seq model consists of two parts: (1) an encoder
that represents source input sequences, and (2) a decoder that
incrementally predicts the next coming symbol. The overall
neural network structure of the joint model is depicted in
Figure 1. In our proposed Seq2Seq model, the encoder is used
to represent input Chinese character sequences, as shown by
the bottom region of the figure, and the decoder is used to
predict the transition action sequences, as shown by the upper
region of the figure. In the following, we describe the encoder
and decoder parts, respectively.

C. Encoder

In this work, as shown by the bottom part of Figure 1,
we use a bi-directional LSTM [19] to encode input Chinese
character sequences, following the majority Seq2Seq mod-
els [16], [33], [34]. Give a sequence of Chinese characters
c1c2 · · · cn, the bi-directional LSTM is built as follows. First,
we derive two sequences of input features −→x 1

−→x 2 · · · −→x n and
←−x 1
←−x 2 · · ·←−x n from the discrete input character symbols by



3

奥奥 运运 会会 正 正 式式 开 开 幕幕

–
奥

–
奥

奥
运
奥
运

运
会
运
会

会
正
会
正

正
式
正
式

式
开
式
开

开
幕
开
幕

幕
–
幕
–

non-static

static

Character
Embedding

BICharacter
Embedding

−→x 1
←−x 1

−→x 2
←−x 2

−→x 3
←−x 3

−→x 4
←−x 4

−→x 5
←−x 5

−→x 6
←−x 6

−→x 7
←−x 7 Non-Linear

−→
h 1

←−
h 1

−→
h 2

←−
h 2

−→
h 3

←−
h 3

−→
h 4

←−
h 4

−→
h 5

←−
h 5

−→
h 6

←−
h 6

−→
h 7

←−
h 7 BI-LSTM

奥运会 NR

compose

正式 AD

compose

Word
Representation

z−2 z−1 Non-Linear

h′−2 h′−1 LSTM

v Non-Linear

o Output

Encoder

Decoder

Figure 1. An example to illustrate the proposed model, which corresponds to the state after applying the fifth action APP as shown in Table I by the bold
line, and is going to predict the sixth action, where “–” is a mark to denote the start or the end of a sentence.

neural embedding, resepctively. And then, we apply a left-to-
right LSTM over −→x 1

−→x 2 · · · −→x n and a right-to-left LSTM over
←−x 1
←−x 2 · · ·←−x n to obtain the bi-directional hidden outputs of

LSTMs, respectively.
Embedding Layer. We make embeddings from two types

of discrete sources: character unigram ct and bigram ctct+1

(t ∈ [1, n]) in this work. Character bigrams have been shown
highly effective for Chinese word segmentation in a number
of studies, under the neural setting [21], [28].

Formally, we exploit two looking-up tables Ec and Ebc for
character unigrams and bigrams, respectively. Give one charac-
ter unigram ct, its embedding Ec

ct is obtained by indexing from
Ec, and given one character bigram ctct+1, its embedding
Ebc

ctct+1
is obtained by indexing from Ebc accordingly. The

two looking-up tables are model parameters which would be
learned during training by the back-propagation loss from the
final training objective.

LSTM Inputs. In this work, the bi-directional LSTM takes
different neural features as inputs due to the exploration of
character bigram embeddings. In both left-to-right and right-
to-left settings, the input representations at position t always
use the features ending at the character ct, where the last input
character bigrams for the left-to-right and right-to-left LSTMs
are ct−1ct and ctct+1, respectively.

In detail, we produce the input features at position t of the
left-to-right LSTM only by embeddings of ct and ct−1ct, while
for the right-to-left LSTM, we use the embeddings of ct and
ctct+1 to produce the corresponding input features at position
t. We use a non-linear feed-forward neural layer to combine
embeddings of character unigrams and bigrams, which can be

formalized as follows:
−→x t = tanh(Wc[E

c
ct ,E

bc
ct−1ct ] + bc)

←−x t = tanh(Wc[E
c
ct ,E

bc
ctct+1

] + bc),
(1)

where Wc and bc are model parameters.
Bi-Directional LSTM. After receiving the two sequences

of features −→x 1
−→x 2 · · · −→x n and ←−x 1

←−x 2 · · ·←−x n, we apply two
LSTMs over them in a left-to-right order and a right-to-left
order,respectively, obtaining the final encoder outputs ht =−→
h t ⊕

←−
h t (t ∈ [1, n]).

Taking the left-to-right LSTM as an example, we compute
its hidden outputs

−→
h 1
−→
h 2 · · ·

−→
h n incrementally as follows:

−→
i t=σ(

−→
Wt
−→x t+

−→
Ut
−→
h t−1+

−→
Vt
−→c t−1+

−→
b t)

−→
f t=σ(

−→
Wf
−→x t+

−→
Uf
−→
h t−1+

−→
Vf
−→c t−1+

−→
b f )

−→o t=σ(
−→
Woxt+

−→
Uo
−→
h t−1+

−→
Vo
−→c t+

−→
b o)

−→c t=
−→
f t �−→c t−1+

−→
i t � tanh(

−→
Wc
−→x t+

−→
Uc
−→
h t−1+

−→
b c)

−→
h t=
−→o t � tanh(−→c t)

(2)

where
−→
i t,
−→
f t and −→o t are input, output and forget gates

which aim to control the information flow inside the LSTM
structure,

−→
U,
−→
V,
−→
W and

−→
b are model parameters, and �

denotes Hadamard product. For the right-to-left LSTM, simply
reverse the computation direction based on ←−x 1

←−x 2 · · ·←−x n.
Pretrained Embeddings. Recently, a number of studies

have demonstrated that pretrained embeddings are able to
bring improved performances in natural language processing
[14], [35], [36], including Chinese word segmentation [37],



4

[38]. In this work, we investigate the effectiveness of pre-
trained embeddings as well.

We pretrain embeddings for character unigrams and bigrams
both. We follow Dyer et al. (2015) [36], augmenting the
representations of character unigrams and bigrams by the
external pretrained embeddings. The pretrained embeddings
are kept in two additional looking-up tables Ẽc and Ẽbc

for character unigrams and bigrams, respectively. Thus the
calculation Equation (1) of the bi-directional LSTM inputs is
changed into:

−→x t = tanh(Wc[E
c
ct ⊕ Ẽc

ct ,E
bc
ct−1ct ⊕ Ẽbc

ct−1ct ] + bc)
←−x t = tanh(Wc[E

c
ct ⊕ Ẽc

ct ,E
bc
ctct+1

⊕ Ẽbc
ctct+1

] + bc),
(3)

The two tables Ẽc and Ẽbc are fixed and would not be fine-
tuned during training, thus we are able to use the embeddings
out of the training data, because the training process does not
change their original distributions. We refer these kinds of
fixed embeddings as static embeddings, while refer the fine-
tuned embeddings obtained from Ec and Ebc as non-static
embeddings, as shown in Figure 1 differentiated by color.

Basic Embeddings & Word-Context Embeddings. Here
we propose two different methods to pretrain the embeddings
of character unigrams and bigrams. The first kind of embed-
dings is pretrained on a raw corpus with only language model
information, while the second kind of embeddings is pretrained
on an auto segmented and POS tagged corpus, where the richer
word-level context information such as segmentation and POS
is included. We refer the two kinds of embeddings as basic
embeddings and word-context embeddings, respectively.

The first kind of embeddings is widely used by previous
neural word segmentation models [20], [21], [24], [28], [37],
[39]. The second kind of embeddings is inspired by recent
studies of Yang et al. (2017) [38] and Zhou et al. (2017) [29],
which pretrain word-context embeddings for neural word seg-
mentation, where only word boundary information is included
in their methods. In this work, we include word-level POS
information as well to enhance the joint task.

In detail, we exploit the skip-gram model [18] to pretrain
the two kinds of embeddings on large-scale corpus. The model
is re-interpreted by Levy and Goldberg (2014) [40], making it
capable of supporting arbitrary features. Given one input unit
u (a character unigram or bigram in this work), the skip-gram
model aims to predict its surrounding features f . During the
training, it aims to maximize the following objective function:∑

(u,f)∈C

log σ(Ẽu · Ẽ′f ) +
∑

(u,f)∈C

log σ(−Ẽu · Ẽ′f ),

where σ(·) denotes the sigmoid function, C denotes the set
of unit-feature pairs occurring in the corpus, and C denotes
those of negative pairs, Ẽ is the pretrained static embeddings
which will be used in our neural joint model.

To pretrain basic embeddings, we extract four surrounding
features for each unit. For example, given a raw sentence
c1c2 · · · cn, we extract the four features ct−2, ct−1, ct+1

and ct+2 for each character unigram ct, and extract similar
four features ct−2ct−1, ct−1ct, ct+1ct+2 and ct+2ct+3 for

each character bigram ctct+1. All these features reflect only
language model information as shown by the example.

To pretrain word-context embeddings, we associate all sur-
rounding features above with richer word context information,
including word boundaries and POS tags. We achieve this goal
simply by defining a special character-level label for each char-
acter that is able to represent word context information. After
then, the new surrounding features are defined over the same
characters augmented with well-defined character-level labels.
For example, a feature ct+1 is changed into ct+1lt+1, and
similarly a feature ct+1ct+2 is changed into ct+1lt+1ct+2lt+2,
where lt+1 and lt+2 are corresponding character-level labels
for ct+1 and ct+2, respectively.

In order to obtain the character-level labels, we segment and
tag the same raw corpus of pretraining basic embeddings by a
discrete joint model ZPar [13]. Given an auto segmented and
POS-tagged sentence w1|p1 w2|p2 · · · wm|pm, we exploit
the BMES schema to convert the word-level POS tags into
character-level labels, where the beginning character of wt is
tagged as B-pt, the ending character is tagged as E-pt and
the remaining characters of wt are labeled as M-pt. If wt is a
single-character word, we tag the character as S-pt.

D. Decoder

The decoder aims to find a next-step action conditioned
on historical actions. The overall decoding framework of our
Seq2Seq model is shown by the upper part of Figure 1.
Following typical Seq2Seq models such as [17], [34], on the
one hand, we extract a source of features from encoder outputs
for prediction, and on the other hand, we build a left-to-right
LSTM over the generated output words incrementally, which is
exploited as another source of features for action classification.

Decoder LSTM. For the left-to-right decoder LSTM, as-
suming the word sequence is w−m · · ·w−2w−1, first we rep-
resent the discrete sequential words into dense hidden vectors
z−m · · · z−2z−1, which will be introduced later, and then we
calculate the LSTM outputs h′−m · · ·h′−2h′−1 incrementally
by using the same Equation (2).

Output Layer. When the decoder LSTM is ready, we are
able to compute a one-step (e.g., at step t) output by the
following Equation:

v = tanh(Wfeature[ht,h
′
−1] + bfeature)

o = Woutputv
(4)

where ht and h′−1 are selected features from encoder and
decoder LSTMs, respectively, Wfeature, Woutput and bfeature are
model parameters, and the dimension size of o equals the
number of transition actions. The best-scored action amax =
argmaxa oa is chosen as the next step action.

Comparison with Typical Seq2Seq Models. To clearly
understand the proposed Seq2Seq model for joint word seg-
mentation and POS tagging, we make comparisons with rep-
resentative Seq2Seq models such as [17], [34], showing two
significant differences of our proposed model.

First, we do not require an attention mechanism, as shown
in Equation (4), we use the t-th hidden vector of encoder
outputs at step t, while other Seq2Seq models commonly apply



5

an attention neural network to align with encoder outputs in
order to find important features automatically. This is because
that the next-step action is defined straightforwardly over a
certain input position in our transition system.

Table I shows an example to illustrate it. As shown by the
bold line at step 5, the next coming (sixth) action SEP(VV)
is exactly corresponding to the sixth character of the sentence
(the character “开(kai)”), which is on top of the queue. The
action is used to label “开(kai)” as a beginning character of the
next word with POS tag VV by definition. Thus our attention
is explicitly defined by the accompanying transition state.

Second, since word-level features for both segmentation and
POS tagging are highly important, the decoder LSTM is built
over the output word sequences instead of the sequence of
predicted actions which are character level in essential. Thanks
to the accompanying transition state, we are able to obtain the
whole sequence of words during decoding, as well as their
POS tags which could be used to enhance word representation.
As shown by the stack column of Table I, we can see that the
word-tag sequence is “奥运会(ao yun hui)|NR 正式(zheng
shi)|AD” after applying the fifth action APP.

Word Representation. We compute vector representations
z−m · · · z−2z−1 of the produced words on stack by two folds:
their POS tags and their character sequences. As shown in
Figure 1, for a given word w−i, i ∈ [1,m], on the one hand,
we use a neural embedding layer to convert its POS tag p−i
into a dense vector Ep

p−i
, where Ep is a looking-up matrix for

POS tags, which is a model parameter initialized randomly and
would be updated during training, similar to the looking-up
tables of non-static character embeddings.

On the other hand, we obtain the word’s vector representa-
tion by its characters w−i = cs · · · ct as one complementary.
For computation efficiency, we directly use the encoder outputs
to compose the representation. We investigate several methods,
including widely-used max, min, average pooling and recently
suggested self-attention pooling [41], as well as the LSTM-
Minus proposed by Wang and Chang (2016) [42].

For all the pooling methods, the word representation can be
computed as follows:

hw−i =

t∑
k=s

akhk,

where

amin
k,d =


1, if k = argminj∈[s,t] hj,d

0, otherwise

amax
k,d =


1, if k = argmaxj∈[s,t] hj,d

0, otherwise,

aaverage
k =

1

t− s+ 1

aattention
k ∞ exp

(
tanh(Wattentionhk + battention)

)
,

where Wattention and battention are two model parameters for
self-attention pooling.

CTB5 CTB6 CTB7 PKU NCC

Train #sent 18k 23k 31k 17k 17k
#word 494k 641k 718k 993k 482k

Devel
#sent 350 2.1k 10k 1.9k 1.9k
#word 6.8k 60k 237k 100k 53k
#oov 553 3.3k 13k 3.8k 3.3k

Test
#sent 348 2.8k 10k 2.5k 3.6k
#word 8.0k 82k 245k 153k 97k
#oov 278 4.6k 13k 6.5k 5.1k

#POS Tag 33 33 33 40 63
Table II

STATISTICS OF DATASETS.

For the LSTM-minus approach, the word representation is
computed by the subtraction of LSTM outputs. For the left-to-
right LSTM, we get a word representation by formula

−→
h w−i

=
−→
h t −

−→
h s−1. And similarly, the representation obtained from

the right-to-left LSTM is calculated by using
←−
h w−i

=
←−
h s −←−

h t−1. Then the word representation of this part is denoted by
hw−i =

−→
h w−i⊕

←−
h w−i . This approach has been used in Zhang

et al. (2017) [43] to represent words in a similar transition-
based model, showing great effectiveness on the Chinese word
segmentation task.

Finally, we combine the above two parts by a non-linear
composition, obtaining the word’s final representation z−i,
which is formalized as:

z−i = tanh(Wcompose[hw−i
,Ep

p−i
] + bcompose), (5)

where Wcompose and bcompose are two model parameters.

E. Training

We train the proposed model by using a simple cross-
entropy loss, following previous studies on deterministic
transition-based neural models [36], [44], [45]. On the one
hand, the training is highly efficient, and on the other hand,
according to our preliminary experiments, we find that the
cross-entropy objective has been already to give strong per-
formances, and we are unable to obtain significantly better
results with global learning proposed by Andor et al. [46] to
maximize sentence-level likelihoods or F-measure scores.

For each prediction, assuming that the gold-standard transi-
tion action is ag , and the resulting score vector for all transition
actions is o, the loss function is defined as follows:

loss(Θ, ag) = − log pag
= − log

exp(oag
)∑

i exp(oi)
, (6)

where Θ is the set of all model parameters, pag
is the

probability of the gold-standard transition action, which is
computed by softmax over the output vector.

We apply online learning with a mini-batch size 16 for
training, updating model parameters at the sentence level by
using Adam [47] with a learning rate 10−3. We exploit the
dropout technique with a ratio 0.25 to avoid overfitting.

III. EXPERIMENTS

A. Experimental Settings

We use the Chinese Penn Treebank version 5.0, 6.0 and
7.0 to conduct the experiments, splitting the corpora into



6

training, development and test sections according to Zhang
et al. (2014) [32]. In addition, we perform experiments on
PKU and NCC datasets as well, where the PKU dataset is
selected from People’s Daily corpus, and the NCC dataset is
from the POS tagging task of the Fourth International Chinese
Language Processing Bakeoff [48].1 Table II shows the corpus
statistics. Although CTB5 has been widely used to evaluate the
joint models of Chinese word segmentation and POS tagging,
it has biases due to the small scale of the test corpus. Thus
we use other four additional datasets to verify our models.

We exploit the standard word-level method to evaluate the
model performances for both word segmentation and POS
tagging, computing word-level precisions (P), recalls (R) and
their F-measures (F), and exploiting the F-measure values
as the major metrics. A word is correctly recognized when
its start/end boundaries are both correct, and a POS tag is
correct only when the corresponding word and its label are
both correct. Thus the POS tagging performance refers to the
performance of joint word segmentation and POS tagging.

The major hyper-parameters in the proposed model are
dimension sizes of neural feature vectors, all of which are
set to 200 in our experiments, except that the dimension size
of POS tag embeddings is 50. We use word2vecf 2 to pretrain
character-level embeddings. All the embeddings, including the
basic and the word-context embeddings of character unigrams
and bigrams, are pretrained on the Chinese Gigaword corpus
(LDC2011T13). In order to obtain the auto segmented and
POS-tagged corpus of pretraining word-context embeddings,
we use ZPar3 to train a joint model on the corresponding
training corpus, and then segment and tag the raw Gigaword
corpus by the trained model.

B. Baseline Systems

We compare our neural joint model with two baseline
systems mainly. The first system is ZPar [13], presented in
the above Section for pretraining of word-context character-
level embeddings. The system is a transition-based model that
exploits discrete manually-crafted features, which has achieved
state-of-the-art performances on joint word segmentation and
POS tagging among the statistical models. By comparing with
this system, we verify the effectiveness of neural features
proposed in this work.

In addition, we also compare our system with a state-of-
the-art pipeline system based on comparable neural features.
The pipeline system consists of two sub systems:
• Word Segmentation. The pipeline neural word segmen-

tation model is implemented by removing all tag-related
components of our neural joint model. In detail, the
model has a same encoder compared with our neural joint
model, a similar decoder without POS tag emeddings
in the left-to-right word LSTM, and only two transition
actions since SEP has no arguments. We exploit the same

1We are unable to obtain the annotated PKU testing corpus of Jin and Chen
(2008 )[48], thus directly use the annotated data chosen from People’s Daily
corpus instead.

2https://bitbucket.org/yoavgo/word2vecf/
3https://github.com/SUTDNLP/ZPar

character-level embeddings as the neural joint model.
In particular, Zhang et al. (2016) [21] have proposed a
similar neural segmentation model based on the same
transition system, and it enhances their model perfor-
mances by using more complicated neural features such
as pretrained word embeddings and beam-search decod-
ing. We find that this simple Seq2Seq word segmentation
model is able to achieve better performances compared
with their model. On the same CTB6, PKU and MSR
datasets adopted in Zhang et al. (2016) [21], this model
obtains testing F-measure scores of 95.58%, 95.72% and
97.38%, respectively, while the corresponding numbers in
their paper are 95.01%, 95.1% and 97.0%, respectively.

• POS Tagging. The pipeline neural POS tagging model is
also a Seq2Seq model, using a word-level bi-directional
LSTM as encoder together with a left-to-right incremen-
tally constructed tag LSTM to predict the next-step POS
tag sequentially, which is similar to our joint model.
Essentially, it adds an incremental tag LSTM in compar-
ison with Wang et al. (2015) [49], which demonstrates
effective in our preliminary experiments for Chinese
POS tagging. As character-level features have also shown
highly helpful for neural POS tagging [50], we build
a convolutional neural network based on the covering
characters of a word to enhance word representation. For
the character-level embeddings, we use the same settings
as our joint model. For the word embeddings, we use the
same corpus of pretraining word-context embeddings to
pretrain them.

The pipeline system is closely related with our neural joint
model in design for fair comparisons. The input character-
level embeddings always keep the same as our neural joint
model. In addition, the pipeline system can use additional
word embeddings, which are necessary inputs for neural
POS tagging, however these embeddings are unable to bring
improved performances in our joint model by integrating them
to enhance our word representation as described by Equation
(5) according to our preliminary observation.

C. Model Details

The proposed neural joint model largely reduces the to-
tal number of model parameters compared with its pipeline
system mentioned above, amounting a similar scale of model
parameters with the baseline word segmentation, since they
are only different in the output dimension of the output
layer, which equals the number of transition actions. The
number is below 64 in all our datasets, while the input and
output dimension sizes of other neural layers are all no less
than 200. The proposed joint model exploits only necessary
neural structures with minimum model parameters, including
char unigram and bigram embeddings, parameters of their
compositions aiming for dimension reduction, parameters of
a one-layer char Bi-LSTM, a left-to-right word LSTM and
two feed-forward neural layers. These model parameters are
all quite common in neural word segmentation models. We
remove word-level embeddings which are necessary model
parameters for the pipeline neural POS tagging model.



7

Model SEG POS
max pooling 95.54 91.20
min pooling 95.40 91.02

average pooling 95.83 91.35
self-attention pooling 95.76 91.28

LSTM-Minus 95.67 91.22
combination 95.86 91.30

Table III
THE INFLUENCES OF DIFFERENT COMPOSITION APPROACHES FOR

WORDCHARACTER .

all −unigram −bigram −POS tag −wordcharacter

89

89.5

90

90.5

91

Figure 2. Feature ablation results on the CTB6 development corpus, where
the Y-axis shows the F-measures of POS.

As the major computation cost lies in the calculation of
encoder and decoder LSTMs, while the other parts affect much
less, for example the output layer of next action prediction.
Thus the speed of the joint model is comparable with the
baseline word segmentation model, saving the cost of the
pipeline POS tagging system. We perform all experiments on
Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz with a single
thread. The proposed model reaches speeds of 40.3 and 84.7
sentences per second for training and testing on average on
the CTB datasets, respectively. For the pipeline system, the
average training and testing speeds are 21.8 and 48.5 sentences
per second, respectively.

D. Development Results

In order to better understand the proposed neural model for
joint word segmentation and POS tagging, we conduct several
development experiments on the CTB6 dataset.

Word Representation (wordcharacter). First, we concern the
word representation methods based on its covering charac-
ters. We have introduced five commonly-used approaches to
obtain a word representation, including max, min, average
and self-attention pooling and LSTM-Minus, as described in
the Decoder subsection. We compare the five methods and
further combine them to investigate the best way of word
representation. The combination is achieved by simple vector
concatenation of the five resulting representations.

Table III shows the results based on F-measures, where no
external character embeddings are used in the experiments.
As shown, except the min pooling, all the other methods are
comparable without significant differences in performances.
Average pooling gives a slightly larger number on the final
POS tagging F-measure, and the combination of the five
approaches does not bring improved results. Thus we adopt
average pooling as the final composition method.

Feature Ablation. Second, we examine the effectiveness
of various features, including character unigrams, character

Model P R F
SEG

no external embeddings 95.76 95.90 95.83
+basic embeddings 96.30 96.34 96.32

+word-context embeddings 97.03 96.84 96.93
POS

no external embeddings 91.28 91.42 91.35
+basic embeddings 92.48 92.44 92.46

+word-context embeddings 93.23 93.04 93.14
Table IV

THE INFLUENCES OF DIFFERENT PRETRAINED EMBEDDINGS.

1 2 3 4 5 6 7 8
91

92

93

94
None Basic Word-Context

Figure 3. The influence of beam-search on the CTB6 development corpus,
where the Y-axis shows the F-measures of POS.

bigrams, POS tags and the word-level features composed from
character-level BI-LSTM (wordcharacter) as mentioned above.
We conduct experiments with no external embeddings. Figure
2 shows the feature ablation results. According to the results,
the character bigrams are most effective, without which the
joint POS tagging performance decreases by close to 2.0% ,
and all the other features are also important and can bring
improved performances.

Influences of Embeddings. Thirdly, we observe the in-
fluences of using different character embeddings. As illus-
trated in the Encoder subsection by the Pretrained
Embeddings part, we have suggested two kinds of pretrained
embeddings for character unigrams and bigrams. Here we
verify the effectiveness of the pretrained embeddings. Table
IV shows the results, which demonstrates that the pretrained
embeddings are highly effective. When the basic embeddings
are exploited, the F-measure values for both segmentation
and POS tagging increase significantly. When the word-
context embeddings are used, the model performances are
boosted further. The results indicate that the external pretrained
embeddings are highly important in our model, and the word-
context embeddings are much better.

Beam Search. Beam search has been a widely-adopted
technique in Seq2Seq models to improve system performances
[34]. We verify its effectiveness in our proposed models.
As shown in Figure 3, we find beam search does not bring
any significant improvements. The main reason could be
due to that the output transition action number is relatively
small. Actually, the same observation is found in Dyer et
al. (2015) [36], who propose a transition-based dependency
parsing model that can be also formalized as Seq2Seq learning.



8

Model CTB5 CTB6 CTB7 PKU NCC
SEG POS SEG POS SEG POS SEG POS SEG POS

Our Model (No External Embeddings) 97.69 94.16 95.37 90.83 95.32 90.25 95.22 92.62 93.97 89.47
Pipeline (No External Embeddings) 97.15 93.72 94.85 90.08 94.71 89.56 94.86 91.84 93.54 88.52
Our Model (Basic Embeddings) 97.93 94.44 95.78 91.79 95.77 91.12 95.82 93.42 94.52 89.82
Pipeline (Basic Embeddings) 97.50 94.01 95.58 91.35 95.36 90.78 95.55 93.00 94.17 89.25
Our Model (Word-context Embeddings) 98.50 94.95 96.36 92.51 96.25 91.87 96.35 94.14 95.30 90.42
Pipeline (Word-context Embeddings) 98.34 94.52 96.21 91.99 96.01 91.36 96.17 93.87 94.88 89.92
ZPar (discrete) [13] 97.68 93.73 95.40 90.84 95.12 90.06 95.09 92.40 93.30 87.44
Wang et al. (2011) [51] 98.11 94.18 95.79 91.12 95.65 90.46 – – – –
Zhang et al. (2014) [32] 97.84 94.62 95.56 91.39 95.51 90.76 – – – –
Chen et al. (2017) [25] – 93.19 – – – – – – – 88.76
Kurita et al. (2017)[26] 98.37 94.83 – – 96.23 91.25 – – – –
Shao et al. (2017) [27] 97.89 94.07 – – – – – – – –

Table V
FINAL RESULTS ON THE TEST DATASETS OF CTB5, CTB6, CTB7, PKU AND NCC.

Embeddings SEG TAG
Riv Roov Riv Roov

No external embeddings 96.64 73.79 92.52 62.34
Basic embeddings 96.69 78.65 93.00 69.57

Word-context embeddings 96.98 82.52 93.45 73.57
Table VI

THE PERFORMANCES OF IV AND OOV WORDS.

E. Final Results

Table V shows the final results on the test datasets of
CTB5, CTB6, CTB7, PKU and NCC. We present the per-
formances of the Seq2Seq neural model by using no external
embeddings, the basic character embeddings and the word-
context embeddings, respectively. According to the results, we
can see that pretrained embeddings are very useful, and the
word-context embeddings achieve the best performances on
all three datasets, which is consistent with the findings of the
development experiments. We compare the proposed neural
joint models with the corresponding discrete baseline system
ZPar [13]. Under a fair purely-supervised setting, the neural
joint model without any pretrained embeddings achieves com-
parable or better performances on the five datasets compared
with this baseline. When external embeddings are used, the
neural joint model gives significantly better performances (p-
value is below 10−5 by using pairwise t-test).

In addition, we compare the proposed joint model with the
corresponding pipeline system as well. As shown in Table
V, the neural joint model outperforms the pipeline system
under all conditions, demonstrating the effectiveness of the
joint framework. The difference is highly significant when we
do not use any kind of pretrained embeddings, while the gap
becomes smaller when basic and word-context embeddings are
exploited as augmented information. The observation indicates
that the pretrained embeddings have included syntactic POS
information already, which is consistent with the findings in
Mikolov et al. (2013) [18]. In the joint model, segmentation
and POS-tagging are capable of full interaction, not only re-
ducing the error propagation, but also improving segmentation
performances in most cases by utilizing syntactic POS tag
information, thus bring better performances for both word
segmentation and POS tagging.

We also compare the proposed Seq2Seq neural model with

1 2 3 4+
80

84

88

92

96

None Basic Word-Context

(a) SEG

1 2 3 4+
76

80

84

88

92

(b) POS

Figure 4. F-measures against word length.

other work in the literature. As shown in Table V, our model
with the basic embeddings is better than Wang et al. (2011)
[51], which is a semi-supervised model by using traditional
handcrafted features, better than Zhang et al. (2014) [32],
which is a joint model for Chinese word segmentation, POS
tagging and dependency parsing, and also better than Shao et
al. (2017) [27], which is a CRF-based neural sequence labeling
model with additional radical and orthographical features of
Chinese characters besides the character-level embeddings.
Our model with the word-context embeddings outperforms the
word-context model of Kurita et al. (2017) [26], which exploits
large-scale segmented corpus to pretrain their embddings.

F. Discussion

In this subsection, we conduct analysis work to examine the
proposed Seq2Seq neural model. All the work is performed on
the CTB6 test dataset.

IV & OOV. First, we examine the influences of in-
vocabulary (IV) and out-of-vocabulary (OOV) words in our
proposed neural model. We examine the model with no
external embeddings, basic embeddings and word-context em-
beddings, respectively, computing their recalls with respect
to IV and OOV words. Table VI shows the results. We can
see that the recalls of IV words are consistently much higher
than the OOV recalls, which is reasonable since unseen words
are more difficult to be recognized. In addition, by using
pretrained character embeddings, both the IV and OOV recalls
increase, and the improvements of the OOV recalls are more



9

Pipeline v.s. Joint
Pipeline 深深深爱爱爱(deeply love)|VV 汉代(Han dynasty)|NR 文采(literary)|NN 的(de)|DEC 柯庆明(Ke Qingming)|NR

Joint 深深深(deeply)|AD 爱爱爱(love)|VV 汉代(Han dynasty)|NR 文采(literary)|NN 的(de)|DEC 柯庆明(Ke Qingming)|NR
Pipeline 中国(China)|NR 对(to)|P 外(foreign)|NN 开放(open)|VV 始于(start by)|VV 八八八十十十(eighty)|CD 年年年代代代(age)|NN

Joint 中国(China)|NR 对(to)|P 外(foreign)|NN 开放(open)|VV 始于(start by)|VV 八八八十十十年年年代代代(eighties)|NT
Joint: None embeddings v.s. Basic embeddings v.s. Word-context embeddings

None 新新新(new)|AD 科科科(branch)|NN 诺贝尔(Nobel)|NR 文学(literature)|NN 奖(prize)|NN 得主(winner)|NN
Basic 新新新科科科(new)|NN 诺贝尔(Nobel)|NR 文学(literature)|NN 奖(prize)|NN 得主(winner)|NN

Word-context 新新新科科科(new)|JJ 诺贝尔(Nobel)|NR 文学(literature)|NN 奖(prize)|NN 得主(winner)|NN
None 深圳(Shenzhen)|NR 保税区绘绘绘(-unknown-)|NN 就就就(towards)|VV 新(new)|JJ 规划(plan)|NN
Basic 深圳(Shenzhen)|NR 保税区(Free Trade Zone)|NN 绘绘绘 (draw)|VV 就就就(towards)|P 新(new)|JJ 规划(plan)|NN

Word-context 深圳(Shenzhen)|NR 保税区(Free Trade Zone)|NN 绘绘绘就就就(draw already)|VV 新(new)|JJ 规划(plan)|NN
Table VII

CASE STUDIES OF THE PROPOSED SEQ2SEQ NEURAL MODEL.

significant. The word-context embeddings can bring increases
close to 10% on the segmentation and POS recalls.

Word Length. Second, we investigate the proposed neural
model by the capability of modeling words of different lengths,
following the work of Zhang et al. (2016) [21]. Figure 4
shows the results. For word segmentation, under all settings,
the performances arrive at the best when the length is 2, and
drop slightly when the length is 1, and become significantly
worse when the length is larger than 2. The phenomenon
is consistent with the finding of Zhang et al. (2016) [21].
While for POS tagging, the trendy is a little different, the
performances decrease consistently when the length increases.
According to the observation, the single-character words are
more difficult to be recognized, while their POS tags are easier
to be identified, which demonstrates the less ambiguities of
single-character words. This is reasonable as the potential POS
information of a composed word is relatively richer than its
components individually.

Case Studies. We show several case studies to demonstrate
the advantages of our neural joint model. We conduct the
analysis by two aspects. On the one hand, we show how the
proposed model benefits from the joint modeling framework.
The upper of Table VII offers two examples. The examples are
selected from our joint model with word-context embeddings
and the pipeline model described in the previous subsection
including the same embeddings. According to the CTB seg-
mentation guideline4, sometimes we need to refer the POS tag
of a subword in order to decide whether it can be regarded as a
full word. For example, in the first example, both “深(deeply)”
and “爱(love)” should be treated as full words, based on the
rule of “AD+V”(adverb + verb). While in the second example,
“八十(eighty)” and “年代(age)” should be combined together
as one full word, based on the rule of “CD+N” (number +
noun). For these cases, the joint model is better as it can
integrate POS information for word segmentation.

On the other hand, we show several examples to express
the differences among our neural joint model with different
character embeddings. As shown by the below part of Table
VII, in the first case, the neural joint model without external
embeddings is incapable of handling OOV word “新科(new)”,

4http://www.cs.brandeis.edu/˜clp/ctb/segguide.3rd.ch.pdf

and it segments the word into two separate words, since
“新(new)” and “科(branch)” are both common words. Al-
though the model with basic embeddings correctly recognizes
it as a single word, it regards the word as noun. As an unknown
word without background knowledge, this is reasonable be-
cause the suffix “科(branch)” can be treated as noun. Only the
model with word-context embeddings correctly gets the word,
tagging it as an adjective word, which is possibly due to that
word-context embeddings have already learned the required
background knowledge. The second example also verifies that
pretrained external embeddings are better, and word-context
embeddings can capture more background information, for
example, the meaning of “accomplish” or “already” for the
Chinese character “就(jiu)”.

IV. RELATED WORK

State-of-the-art Chinese word segmentation models can be
categorized into two types: character-based [1] and word-based
models [4]. Both two kinds of models have been investigated
intensively under traditional statistical and neural network
settings. The character-based models are usually solved by
conditional random filed (CRF) [3], [24], [28], [37], using fea-
tures from character unigrams and bigrams. Comparing with
character-based models, the word-based models are capable of
using word-level features, which are another source of useful
features [20], [21], [39], [52].

Our work is closely related to the work of Zhang et al.
(2016) [21], which is a transition-based neural model for word
segmentation. Our transition system can be regarded as an
extension of the work, by integrating POS tagging at the same
time. Our work is also significantly different in that we exploit
a Seq2Seq framework to obtain strong performances, using
only a greedy search strategy based on well-designed neural
network structures.

POS tagging is commonly treated as a sequence labeling
problem, and is generally solved by CRF or transition-based
models [6]–[8], [53]. Features can be slightly different among
different languages. For Chinese, word-level and character-
level features are both important [5], [31]. Recently, neural
network models are able to achieve better performances than
traditional statistical models based on discrete features, by
using bi-directional LSTM to extract features [22], [23].



10

For Chinese, joint word segmentation and POS tagging has
shown improved performances compared with the pipeline
systems [9]–[13], [54], as the two tasks are closely related,
and on the other hand the joint models can reduce error
propagation [55], [56]. Our work is mainly inspired by the
great success of these studies. We propose a Seq2Seq neural
model for the joint task, since neural network models have
shown better performances on word segmentation.

There have been several neural based joint models for
word segmentation and POS tagging [24]–[26]. Almost all
studies exploit character-level CRF framework to achieve the
goal, which is unable to incorporate word-level information.
Only one exception is the work of Kurita et al. (2017) [26],
which performs the best among previous studies on the CTB5
dataset. The work exploits a transition-based method as well
but requires much effort on feature engineering (more than
40 atomic features are used in the model). Our work aims
to present a simpler yet more effective model for the joint
task. We exploit a Seq2Seq framework and give the top
performances among all datasets used in our experiments.

The goal of Seq2Seq learning is to predict a sequence of
target symbols conditioned on an observed sequence [15]. The
framework has been successfully applied on a number of NLP
tasks due to its simplicity and efficiency, including machine
translation [33], dialogue [16], syntax parsing [30], question
answering [17] and summarization [57]. In this work, we apply
the Seq2Seq framework on joint word segmentation and POS
tagging, by using a transition system to convert the problem
into predicting a sequence of symbols (transition actions).

V. CONCLUSIONS

We proposed a simple and effective Seq2Seq neural model
for joint Chinese word segmentation and POS tagging. The
model is built based on a well defined transition system for
the joint task, which transforms the decoding process into
predicting a sequence of transition actions. The key features
of the neural model are based on two LSTMs, one of which
is the bi-directional LSTM over the input character sequence,
and the other is a left-to-right LSTM over the historical word-
tag pairs that can be directly obtained by the transition system.
To better represent characters, we presented the word-context
character embeddings. We conducted experiments on five stan-
dard datasets to evaluate our joint models. Experimental results
demonstrated that the proposed model is highly competitive.
By using the word-context character embeddings, the Seq2Seq
neural model is able to achieve the best-reported performances
on all the five datasets.

REFERENCES

[1] N. Xue, “Chinese word segmentation as character tagging,” International
Journal of Computational Linguistics and Chinese Language Process-
ing, vol. 8(1), 2003.

[2] H. T. Ng and J. K. Low, “Chinese part-of-speech tagging: One-at-a-
time or all-at-once? word-based or character-based?” in Proceedings of
EMNLP 2004, 2004, pp. 277–284.

[3] F. Peng, F. Feng, and A. McCallum, “Chinese segmentation and new
word detection using conditional random fields,” in Proceedings of
Coling 2004, Aug 23–Aug 27 2004, pp. 562–568.

[4] Y. Zhang and S. Clark, “Chinese segmentation with a word-based
perceptron algorithm,” in Proceedings of the 45th ACL, June 2007, pp.
840–847.

[5] W. Sun and H. Uszkoreit, “Capturing paradigmatic and syntagmatic
lexical relations: Towards accurate chinese part-of-speech tagging,” in
ACL, July 2012, pp. 242–252.

[6] Z. Li, J. Chao, M. Zhang, W. Chen, M. Zhang, G. Fu, Z. Li, J. Chao,
M. Zhang, W. Chen et al., “Coupled pos tagging on heterogeneous
annotations,” IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), vol. 25, no. 3, pp. 557–571, 2017.

[7] M. Collins, “Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms,” in EMNLP, July
2002, pp. 1–8.

[8] L. Yang, M. Zhang, Y. Liu, M. Sun, N. Yu, and G. Fu, “Joint pos
tagging and dependency parsing with transition-based neural networks,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
pp. 1–1, 2017.

[9] W. Jiang, L. Huang, Q. Liu, and Y. Lü, “A cascaded linear model for joint
chinese word segmentation and part-of-speech tagging,” in Proceedings
of ACL, June 2008, pp. 897–904.

[10] Y. Zhang and S. Clark, “Joint word segmentation and POS tagging using
a single perceptron,” in Proceedings of ACL-08: HLT, June 2008, pp.
888–896.

[11] C. Kruengkrai, K. Uchimoto, J. Kazama, Y. Wang, K. Torisawa, and
H. Isahara, “An error-driven word-character hybrid model for joint
chinese word segmentation and pos tagging,” in ACL, August 2009,
pp. 513–521.

[12] T. Qian, Y. Zhang, M. Zhang, Y. Ren, and D. Ji, “A transition-
based model for joint segmentation, pos-tagging and normalization,” in
Proceedings of the 2015 EMNLP, 2015, pp. 1837–1846.

[13] Y. Zhang and S. Clark, “A fast decoder for joint word segmentation and
POS-tagging using a single discriminative model,” in Proceedings of the
EMNLP, October 2010, pp. 843–852.

[14] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” JMLR,
vol. 12, pp. 2493–2537, 2011.

[15] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[16] O. Vinyals and Q. Le, “A neural conversational model,” arXiv preprint
arXiv:1506.05869, 2015.

[17] J. Yin, X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li, “Neural generative
question answering,” in IJCAI, 2016.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[19] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
Networks, vol. 18, no. 5, pp. 602–610, 2005.

[20] D. Cai and H. Zhao, “Neural word segmentation learning for chinese,”
in Proceedings of ACL 2016, 2016.

[21] M. Zhang, Y. Zhang, and G. Fu, “Transition-based neural word segmen-
tation,” in Proceedings of ACL, Berlin, Germany, 2016, pp. 421–431.

[22] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[23] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-
directional lstm-cnns-crf,” in Proceedings of the 54th ACL, Berlin,
Germany, August 2016, pp. 1064–1074. [Online]. Available: http:
//www.aclweb.org/anthology/P16-1101

[24] X. Zheng, H. Chen, and T. Xu, “Deep learning for Chinese word
segmentation and POS tagging,” in Proceedings of the 2013 Conference
on EMNLP, Seattle, Washington, USA, October 2013, pp. 647–657.
[Online]. Available: http://www.aclweb.org/anthology/D13-1061

[25] X. H. Xinchi Chen, Xipeng Qiu, “A feature-enriched neural model
for joint chinese word segmentation and part-of-speech tagging,” in
Proceedings of the IJCAI, 2017.

[26] S. Kurita, D. Kawahara, and S. Kurohashi, “Neural joint model for
transition-based chinese syntactic analysis,” in Proceedings of the 55th
ACL, July 2017, pp. 1204–1214.

[27] Y. Shao, C. Hardmeier, J. Tiedemann, and J. Nivre, “Character-based
joint segmentation and pos tagging for chinese using bidirectional rnn-
crf,” arXiv preprint arXiv:1704.01314, 2017.

[28] X. Chen, X. Qiu, C. Zhu, P. Liu, and X. Huang, “Long short-
term memory neural networks for chinese word segmentation,” in
Proceedings of EMNLP, September 2015, pp. 1197–1206. [Online].
Available: http://aclweb.org/anthology/D15-1141



11

[29] H. Zhou, Z. Yu, Y. Zhang, S. Huang, X. Dai, and J. Chen, “Word-context
character embeddings for chinese word segmentation,” Proceedings of
EMNLP, 2017.

[30] L. Kong, C. Alberti, D. Andor, I. Bogatyy, and D. Weiss, “Dragnn: A
transition-based framework for dynamically connected neural networks,”
arXiv preprint arXiv:1703.04474, 2017.

[31] Z. Li, M. Zhang, W. Che, T. Liu, W. Chen, and H. Li, “Joint models for
chinese pos tagging and dependency parsing,” in EMNLP, July 2011,
pp. 1180–1191.

[32] M. Zhang, Y. Zhang, W. Che, and T. Liu, “Character-level chinese
dependency parsing,” in Proceedings of the 52nd ACL, June 2014, pp.
1326–1336.

[33] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[34] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[35] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1746–1751.

[36] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith,
“Transition-based dependency parsing with stack long short-term mem-
ory,” in ACL, July 2015, pp. 334–343.

[37] W. Pei, T. Ge, and B. Chang, “Max-margin tensor neural network
for chinese word segmentation,” in Proceedings of the 52nd ACL,
Baltimore, Maryland, June 2014, pp. 293–303. [Online]. Available:
http://www.aclweb.org/anthology/P14-1028

[38] J. Yang, Y. Zhang, and F. Dong, “Neural word segmentation with rich
pretraining,” in ACL, July 2017, pp. 839–849.

[39] Y. Liu, W. Che, J. Guo, B. Qin, and T. Liu, “Exploring segment
representations for neural segmentation models,” in Proceedings of
IJCAI 2016, 2016.

[40] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in
Proceedings of the 52nd ACL, June 2014, pp. 302–308.

[41] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” arXiv
preprint arXiv:1703.03130, 2017.

[42] W. Wang and B. Chang, “Graph-based dependency parsing with bidi-
rectional lstm,” in ACL, August 2016, pp. 2306–2315.

[43] M. Zhang, G. Fu, and N. Yu, “Segmenting chinese microtext: Joint
informal-word detection and segmentation with neural networks,” in
Proceedings of IJCAI 201t, 2017.

[44] D. Chen and C. Manning, “A fast and accurate dependency parser using
neural networks,” in EMNLP, October 2014, pp. 740–750.

[45] M. Zhang and Y. Zhang, “Combining discrete and continuous features
for deterministic transition-based dependency parsing,” in Proceedings
of the 2015 EMNLP, September 2015, pp. 1316–1321. [Online].
Available: http://aclweb.org/anthology/D15-1153

[46] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins, “Globally normalized transition-based neural
networks,” in ACL, August 2016, pp. 2442–2452.

[47] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[48] G. Jin and X. Chen, “The fourth international chinese language process-
ing bakeoff: Chinese word segmentation, named entity recognition and
chinese pos tagging,” in Proceedings of the sixth SIGHAN workshop on
Chinese language processing, 2008.

[49] P. Wang, Y. Qian, F. K. Soong, L. He, and H. Zhao, “Part-of-speech
tagging with bidirectional long short-term memory recurrent neural
network,” arXiv preprint arXiv:1510.06168, 2015.

[50] C. D. Santos and B. Zadrozny, “Learning character-level representations
for part-of-speech tagging,” in Proceedings of the 31st ICML, 2014, pp.
1818–1826.

[51] Y. Wang, J. Kazama, Y. Tsuruoka, W. Chen, Y. Zhang, and K. Tori-
sawa, “Improving chinese word segmentation and pos tagging with
semi-supervised methods using large auto-analyzed data,” in IJCNLP,
November 2011, pp. 309–317.

[52] X. Sun, Y. Zhang, T. Matsuzaki, Y. Tsuruoka, and J. Tsujii, “A dis-
criminative latent variable chinese segmenter with hybrid word/character
information,” in NAACL, June 2009, pp. 56–64.

[53] K. Toutanova, D. Klein, C. Manning, and Y. Singer, “Feature-rich part-
of-speech tagging with a cyclic dependency network.” in Proceedings
of HLT-NAACL 2003, 2003.

[54] X. Qian, Q. Zhang, Y. Zhou, X. Huang, and L. Wu, “Joint training and
decoding using virtual nodes for cascaded segmentation and tagging
tasks,” in Proceedings of the EMNLP, Cambridge, MA, October 2010,
pp. 187–195. [Online]. Available: http://www.aclweb.org/anthology/
D10-1019

[55] Z. Li, M. Zhang, W. Che, T. Liu, and W. Chen, “Joint optimization for
chinese pos tagging and dependency parsing,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 22, no. 1, pp. 274–
286, 2014.

[56] D. Tang, B. Qin, F. Wei, L. Dong, T. Liu, and M. Zhou, “A joint
segmentation and classification framework for sentence level sentiment
classification,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 23, no. 11, pp. 1750–1761, 2015.

[57] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in Proceedings of the 55th ACL,
Vancouver, Canada, July 2017, pp. 1073–1083.


